
MEng Individual Project

Imperial College London

Department of Computing

Kubedim: Self-Adaptive Service
Degradation of Microservices-Based

Systems

Author:
Kelvin Zhang

Supervisor:
Dr Antonio Filieri

Second Marker:
Dr Robert Chatley

June 2021

Abstract

Popular techniques to improve the resilience of applications written in the microservices
architecture, such as load balancing and auto-scaling, are limited by the cost of scaling,
performance bottlenecks in code, and time delays in responding to high load. Recent work
in control theory has taken an orthogonal approach by responsively and uniformly reducing
the availability of optional components in a system under load; however, this work has been
limited in applicability to industry, both in the ease of configuration and the ability to meet
business objectives.

We propose to address this issue with Kubedim, a self-adaptive reverse proxy which me-
diates access to application components based on system load to improve both system
resilience and business objectives. Kubedim is designed to be easily integrated with Ku-
bernetes, a common orchestration tool for the configuration and deployment of cloud ap-
plications. We implement two strategies to respond to high load: reducing availability
of components non-uniformly with a model-based approach which accounts for side ef-
fects such as feature interactions and bottleneck transfers, and profiling users to reduce
availability for low priority users using a declarative configuration.

We modified Sock Shop, an e-commerce reference application, to add optional components
and improve the reproducibility of experiments. Experimental results indicate as much as
a 22% increase in availability during high load compared with the uniform technique from
prior work and a significant increase in items checked out from Sock Shop. We find that
our approach is highly usable and applicable to developers in industry.

Acknowledgements

I would like to express my gratitude to my supervisor, Dr Antonio Filieri, who has not
only supported me throughout my project with his expertise and feedback, but also offered
invaluable guidance and encouragement throughout the wider academic year.

I am also grateful for the support from my second marker, Dr Robert Chatley, whose
feedback during the interim report and inputs on assessing usability in industry added a
valuable perspective to the project.

Finally, I would like to thank my friends and family for their unwavering support through-
out the years, particularly in providing the warmth and motivation which have been in-
strumental in enabling me to complete this project.

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Objectives and Challenges . 6
1.3 Contributions . 6

2 Background 8
2.1 Cloud Architectures and Microservices . 8

2.1.1 Microservices . 8
2.1.2 Containers . 9
2.1.3 Container Orchestration . 9
2.1.4 Service Level Objectives and Service Quality Management 10
2.1.5 Circuit-Breaker Pattern and Brownout 11

2.2 Self-Adaptation and Control Theory . 11
2.2.1 Self-Adaptive Software and Feedback Loops 11
2.2.2 Controllers . 12

2.3 Modelling and Forecasting . 13
2.3.1 Random Sampling . 13
2.3.2 Time Series Analysis . 14
2.3.3 Clustering . 15
2.3.4 Dimensionality Reduction . 15

3 Related Work 16
3.1 Brownout and Control Theory in Adaptive Resource Management 16
3.2 Performance Modelling and Parametric Dependencies 17
3.3 Statistical Approaches to Resource Management 18
3.4 Reference Applications for Microservices . 19

4 Kubedim 21
4.1 Brownout Strategies . 21

4.1.1 Baseline Dimming . 21
4.1.2 Component Weightings . 21
4.1.3 User Profiling . 22

4.2 Deployment . 22
4.3 Configuration . 23

4.3.1 Component Weightings . 23
4.3.2 User Profiling . 24

5 Implementation 25
5.1 High-level Architecture . 25
5.2 Proxying and Brownout with Adaptive Control 26

5.2.1 Monitoring (Response Time Collection) 26

2

5.2.2 Analysis and Planning (PID Controller) 26
5.2.3 Execution (Reverse Proxy Actuation) 27

5.3 Component Weightings . 28
5.3.1 Offline Training . 28
5.3.2 Online Training . 29

5.4 User Profiling . 30
5.4.1 High-Level Implementation . 31
5.4.2 Profiling Lifecycle . 31

6 Sock Shop for Kubedim 33
6.1 Reproducibility . 33

6.1.1 Carts Database . 34
6.1.2 Session Storage . 34

6.2 Optional Components . 34
6.3 Deploying Kubedim . 35

7 Evaluation 37
7.1 Kubernetes Setup . 37
7.2 Load Testing Setup . 38

7.2.1 User Behaviour Models . 38
7.2.2 Load Shape . 40
7.2.3 Data Collection . 40
7.2.4 Deployment . 40

7.3 High-level Methodology . 41
7.4 Brownout Strategies . 41

7.4.1 Baseline Dimming: Behaviour . 41
7.4.2 Baseline Dimming: Improvement over Dimming Disabled 43
7.4.3 Component Weightings: Behaviour 44
7.4.4 Component Weightings: Improvement over Baseline Dimming 45
7.4.5 Component Weightings: Online Training Correctness 46
7.4.6 Component Weightings: Online Training Robustness 47
7.4.7 Profiling: Behaviour . 48
7.4.8 Profiling: Improvement over Baseline Dimming 50
7.4.9 Profiling: Combining with Component Weightings 51
7.4.10 Comparing Component Weightings and Profiling 52
7.4.11 Conclusion . 53

7.5 Developer Usability . 54
7.5.1 Component Weightings . 55

8 Conclusion and Future Work 58
8.1 Conclusion . 58
8.2 Future Work . 59
8.3 Ethical Considerations . 60

A User Manual 65

B Sock Shop for Kubedim Configuration 66
B.1 Main Application Configuration . 66
B.2 Kubedim Configuration . 66
B.3 Offline Training Tool Configuration . 66

C Saturation Experiments 67

3

D Brownout Strategy Experiments 69
D.1 Dimming Disabled . 69
D.2 Baseline Dimming . 69
D.3 Component Weightings Strategy . 70
D.4 Profiling Strategy . 71

E Developer Usability Experiments 72

4

Chapter 1

Introduction

1.1 Motivation

Microservices-oriented architecture has become common in industry for its versatility, but
scalability is a key challenge to overcome [1]. Both proactive and reactive measures can be
taken to ensure a system scales seamlessly to changes in traffic. However, when unexpect-
edly high loads occur and a system is unable to scale (perhaps due to vertical scalability
limits or an under-investment in proactive or reactive measures), systems can fail unpre-
dictably and quickly, with requests timing out for patiently waiting users, leading to a
confusing and frustrating user experience.

More graceful service degradation can mitigate the impact of high load on user experience:
the circuit breaker pattern [2] is commonly used by web servers and load balancers to
reliably throttle requests under high load so that requests which cannot be fulfilled are
confidently and quickly rejected with a relevant message displayed to the user. This graceful
service degradation is particularly helpful as, over time, the technical environment is always
evolving and changing (e.g., request mix, architecture layers, hardware configurations,
features and their corresponding API routes being added/removed, configuration files,
etc.), and unexpected reductions in system capacity can easily be introduced. Hence, even
in a well-designed cloud application, the circuit breaker pattern can be a valuable fallback
when all scalability measures have been exhausted.

The circuit breaker pattern is, however, not a perfect service degradation method: being
indiscriminate to what type of requests are being throttled, availability is reduced for users
regardless of how business-critical their requests are. However, in recent years, the concept
of brownout has emerged in software engineering and control theory research [3], where an
application can be split up into required and optional components, then a controller applies
the circuit breaker pattern for a variable proportion of requests to optional components in
response to changes in system load. Kotegov and Filieri [4] demonstrate an implementation
of this pattern in a Kubernetes environment hosting a shopping cart reference application
with an optional recommender system. This more discriminative method of applying the
circuit breaker pattern is a step forward towards balancing the benefits of an effective
fallback mechanism for systems experiencing high load with maintaining availability for
business-critical user flows.

Open questions remain on how to bring brownout to applications in industry. First, both
business objectives (service level objectives on user experience, revenue, etc.) and microser-
vice architectures are more complex than use cases demonstrated in prior works. Second,
reconciling these complex needs in a controller is an open area of investigation in control

5

theory [5]. With greater complexity, effective feature interaction analysis will be required:
applying brownout changes the request mix of a system, which can shift bottlenecks be-
tween microservices and cause other side-effects, hence deciding which features would be
most effective to apply brownout to is a challenging task for a more advanced brownout
system.

1.2 Objectives and Challenges

In this project, we will create a brownout system which uses a knowledge-driven approach
to make informed brownout decisions, meeting business objectives in a complex, real-world
microservices environment. The two overall research objectives are to:

• Adapt existing control theory approaches to brownout, augmenting these approaches
with previous work on systems modelling, so that optimal brownout decisions can be
made at a selective component level.

• Create a workflow, from configuration to deployment, which is deemed usable by
DevOps engineers in a business environment. Developers will need to be able to
specify their business objectives during the configuration stage.

The first objective requires the brownout system to have knowledge about how system
components contribute load to a system and interact with each other, as control theory
alone is insufficient to select the most optimal features for brownout decisions to be made.
We will investigate building a model which can be easily generated in order to provide
valuable decisions to the controller based on monitoring data at runtime. To determine
our model, we will need to understand what data will be relevant to decision-making (e.g.,
correlations in load between microservices, expected user flows, etc.), and the data available
to us in the APIs we implement. We discuss possible modelling techniques in Section 3.2
and Section 3.3.

Beyond relevancy of data, designing the decision-making behaviour will be a significant
challenge. First, the decision must not incur side-effects in the system: as microservices
can depend on each other, applying brownout selectively can lead to bottleneck transfers
and system instability if dependencies are not considered. Second, this requirement must
be reconciled with business objectives, and conflicts must be resolved. Third, these re-
quirements must be evaluated using a reference application which demonstrates sufficient
complexity, which we consider in Section 3.4.

The second objective requires our system to be usable in a real-world environment. We
will consider how the system will be configured, how easily the model can be trained, and
how easily the brownout system can be integrated into existing systems. To achieve this,
developers will need to be able to specify how microservices and endpoints correlate with
their business goals, and this specification will need to be deployable on the microservices
platform using available monitoring data and APIs. For example, a user ordering an
item could be deemed as more important than a user browsing a catalogue, and this
specification will need to be representable in our configuration, classifiable at training time
and detectable at runtime.

1.3 Contributions

We summarise our contributions as follows:

• We implement a brownout-enabled reverse proxy which can easily be integrated into
Kubernetes, a popular microservices orchestration platform, being mindful of our

6

second objective of developer usability. We introduce this system and describe its
configuration and deployment workflows in Chapter 4, before detailing its implemen-
tation in Chapter 5.

• In addition to implementing prior brownout work by Kotegov and Filieri [6] as a base-
line, we introduce two knowledge-based brownout strategies, introduced in Section
4.1, which meet our first objective. These strategies take into account side effects
from feature interactions, as well as the impact of brownout on user experience and
business objectives.

• We make significant changes to a shopping cart reference application, Sock Shop [7],
to add optional components and to improve the reproducibility of our experiments.
This is described in Chapter 6.

• We evaluate our work in Chapter 7 using a reproducible load testing setup, showing
as much as a 28% in component availability during high load compared to prior work,
as well as a significant increase in the number of items checked out from Sock Shop,
meeting our first objective. We also find that our work has a high level of usability
for developers due to the ease of configuring selective strategies, meeting our second
objective.

• Our work is open sourced1 and is accompanied by a user manual, shown in Appendix
A. Our system’s brownout logic is automatically deployed from a declarative config-
uration file with no control theory knowledge required from the developer. Hence,
we reduce the knowledge barrier to the evaluation, adoption and improvement of our
work by the wider developer community.

1https://github.com/kcz17

7

https://github.com/kcz17

Chapter 2

Background

In this chapter, we introduce concepts which are required to understand this work. Sections
2.1 and 2.2 introduce microservices, resource management in the cloud and the concept
of brownout in the context of control theory, the basis of our work. Then, Section 2.3
introduces statistical techniques which will be relevant to our work.

2.1 Cloud Architectures and Microservices

2.1.1 Microservices

Monolithic architectures consist of separate services developed within a single codebase
and deployed as a single component. Monolithic applications exhibit several limitations at
scale [8]: scalability is limited as all services must be scaled even if only one service is under
high load; complex workflows are required for developers to work on the same codebase;
and the deployed application is typically a single point of failure.

Front-end (JavaScript)

Business logic (Java)

Database (MySQL)

Monolith Architecture

Front-end (JavaScript)

Shopping cart
business logic

(Java)

Shopping cart
database

(PostgreSQL)

Microservice Architecture

Catalogue
business logic

(Go)

Catalogue
database

(MongoDB)

Authentication
middleware

(Go)

Administration
business logic

(Kotlin)

Figure 2.1: Comparison of architectures in an example e-commerce deployment [9].

In contrast, microservices are an architectural approach where services are split up into
separate components which are independently deployable, scalable and designed to resist
failure, as shown in Figure 2.1 [10]. This architecture is supported by automation and de-
centralisation of infrastructure so that services can be built with different sub-components
and tooling, then automatically deployed and managed.

8

2.1.2 Containers

Lightweight containers are commonly used to deploy microservices [10]. Pahl et al. [11]
describe containers as holding “packaged, self-contained, ready-to-deploy parts of applica-
tions, and if necessary, middleware and business logic (in binaries and libraries) to run
the applications”. Microservices are well-encapsulated by containers: each of the different
languages and technologies (and their separate versions) which individual microservices are
built with can be deployed as individual containers in isolation. Then, container engines
such as Docker handle configuration and deployment of containers, as well as allowing
containers to communicate with each other.

Container engines provide the virtualisation layer that containers are deployed onto, so
that multiple containers can run on the same physical system at one time [11]. With
cloud computing also using virtualisation in order to deploy virtual servers under physical
systems, microservices architectures typically leverage the elasticity, availability and other
features of cloud computing environments in hosting their containers.

2.1.3 Container Orchestration

In real-world environments, container engines alone are typically insufficient to deploy
cloud applications due to the complexity required in managing a deployment spanning
dozens of networked containers. Orchestrators coordinate the deployment and manage-
ment of containers according to developer-specified policies, therefore abstracting away
this complexity.

Our work focuses on Kubernetes, an orchestrator which provides features tailored towards
cloud applications [12], including: cluster management, the management of several in-
stances of containers deployed across a cluster of physical hosts; service discovery, keeping
track of network addresses of instances; and resilience and scalability features such as
efficient clustering and automatic scaling of containers, and load balancing network traf-
fic.

We present below concepts and definitions used in Kubernetes relevant to our work.

Kubernetes Cluster

User Service

PodPod
Pod

Cart Service

PodPod
Pod

Order Service

PodPod
Pod

DB Service

PodPod
Pod

Loaded ConfigMaps

Ingress
Controller

Figure 2.2: Visualisation of a Kubernetes cluster with an ingress controller [13].

Pods. Pods are the smallest unit of deployment, typically wrapping a single container.

Nodes. Nodes are virtual or physical machines which pods are run on. There are typically
multiple pods running on the same node, and one or more nodes in a cluster. Kubernetes

9

is responsible for the scheduling of pods onto nodes based on pod requirements and node
capacities.

Deployments. Pods can directly be created. However, a more common pattern is to
create a deployment, which allows developers to declaratively specify how they want one
or more pods to be deployed, including whether pods should be replicated.

Services. An application running on a set of pods can be exposed to the network. Services
abstract replicas of pods by managing a unique DNS hostname assignment so that, while
each pod in a service is assigned an internal IP address, external clients only need to work
with the specified hostname. The service then decides how client requests to the hostname
are routed to specific pods.

Ingress Controllers. An ingress resource defines an entry point between the services on
a cluster and external clients, as shown in Figure 2.2. Each ingress resource is managed
by an ingress controller, which applies routing rules, typically with load balancing. Ingress
controllers are implemented as third party integrations with load balancing and reverse
proxy platforms like NGINX Reverse Proxy and HAProxy.

ConfigMaps. A common pattern in software engineering is to avoid hardcoding con-
figuration values in code by reading configuration values from environment variables or
by loading a configuration file. Kubernetes provides the ConfigMap object as a method
to declaratively set configuration values and specify how they will be made available to
a running container (e.g., by mounting a volume containing a YAML file or by setting
environment variables).

2.1.4 Service Level Objectives and Service Quality Management

Service level objectives (SLOs) are goals which application providers aim to reach based on
quantifiable quality of service (QoS) metrics (e.g., response time) [14]. Cloud applications
are often designed to meet SLOs: for example, an online shopping platform may aim to
achieve sub-one second page load times at the 99.9th percentile, as higher load times turn
away potential customers who are browsing the platform.

Application performance can be degraded due to factors such as sudden outages of physical
hosts and high system load, leading to SLO violations. For example, flash crowds – surges
in traffic due to a sudden increase in users – can quickly lead to bottlenecks in nodes’ CPUs
or network connections, leading to service unavailability. We introduce below common
techniques in cloud environments used to maintain a high quality of service.

Auto-Scaling. Auto-scaling is a load management technique which leverages the elasticity
of cloud environments, where replicas of resources can quickly be scaled up and down in
order to respond to changes in workloads [15]. Auto-scaling is particularly useful against
flash crowds, where resources are provisioned to meet service demand, then scaled back
down to prevent the monetary expense of over-provisioning.

Self-Healing. Container orchestrators like Kubernetes can monitor the status of contain-
ers in a cluster and perform automated recovery if containers become unavailable. This is
particularly useful in cases of sudden system failure: if Kubernetes detects a node failure
in a multi-node cluster, pods can be re-created under other nodes.

Load Balancing. Load balancers ensure that load is distributed across replicas so that
no single replica is overwhelmed by a majority of requests. Network requests first arrive
at a load balancer before being routed and served by a replica. Load balancers can also be
configured with additional rules, such as assigning priorities to particular requests.

10

Auto-scaling and self-healing are not perfect solutions: the number of maximum nodes to
scale to in auto-scaling must be bounded to prevent the deployment cost from exceeding
company budgets. In both techniques, it may take several seconds to minutes to create a
new pod, during which the performance degradation would not be resolved. A deployment
may have also a static allocation of resources and not use auto-scaling or self-healing, in
which high load cannot be mitigated by managing resources.

2.1.5 Circuit-Breaker Pattern and Brownout

High load scenarios lead to negative impacts on user experience and the potential for
complete system outages. For users of an application under high load, they either wait
on a blank page for tens of seconds before it slowly loads, or grow impatient, leading to
a high attrition rate. In some cases, a retry storm can occur, where the client-side, or
services which consume other services, naively continue retrying their requests, leading to
an unintentional denial of service attack. Two approaches, the circuit-breaker pattern and
brownout, which are orthogonal to auto-scaling and other resource management techniques,
attempt to mitigate these impacts.

The circuit-breaker pattern overcomes the above high load limitations by having the appli-
cation accept requests up to a certain rate limit, then throttling and immediately rejecting
requests above this limit. For users whose requests are rejected, they receive an error mes-
sage immediately, an improvement in experience over patiently waiting for a page which
may never load.

Brownout is an evolving technique inspired by the circuit-breaker pattern which leverages
the fact that some components of a system are more important, perhaps in business value
or user experience, than other components [3]. In brownout, the required and optional
components of a cloud application are first determined. Then, during runtime, a system
reacts to high load by disabling optional components: the higher the load, the less likely
optional components are enabled. This technique is typically realised using control theory
at the network ingress or load balancing layer [4].

2.2 Self-Adaptation and Control Theory

Filieri et al. [16] introduce the concept of self-adaptation at the intersection of software
and control engineering. In this section, we explain the high-level design of self-adaptive
systems from a software engineering perspective and then describe the implementation of
such systems from a control theory perspective.

2.2.1 Self-Adaptive Software and Feedback Loops

Self-adaptive software is realised by a closed-loop system with a feedback loop aiming to
adjust itself to changes during its operation in order to ensure that given goals are not
violated [17]. This closed loop system is managed by the adaptation manager, which is
responsible for handling this feedback loop.

In software engineering, a common feedback loop design is the Monitor-Analyse-Plan-
Execute (MAPE) loop, optionally with a shared knowledge base (Figure 2.3). The monitor
phase collects and correlates data from the system and its environment; the analyse phase
analyses the monitoring data along with historical data; the plan phase determines what
changes are need and the optimal way to effect the changes; the execute phase applies
the determined actions. All steps may consult a shared knowledge base, leading to the
MAPE-K acronym.

11

Knowledge

Environment

Adaptive System

Adaptation Manager

Monitor

Analyse Plan

Execute

Figure 2.3: A self-adaptive system with a MAPE-K loop. Adapted from Filieri et al. [16].

In control theory, a self-adaptive system is realised by a control loop, consisting of a plant
(i.e., the adaptive system) and controller, as shown in Figure 2.4. Intuitively, given a
discretised time step k, the controller uses the error e(k) between the plant output y(k)
and the plant goals y(k) in order to decide how to change the parameters (or knobs) u(k)
of the system. Control loops may also have to deal with disturbances, denoted by d(k),
which are external factors that may affect the output.

Controller
C

Plant
P

Figure 2.4: A control loop in a self-adaptive system. Adapted from Filieri et al. [16].

Filieri et al. [18] describe a methodical approach of implementing a control loop. First, the
system’s goals must be identified, for example, by choosing a target setpoint (a reference
value) or a quantity to minimise or maximise. Then, the knobs which change software
behaviour, such as resource allocation to the plant, are identified. Next, a model of the
plant needs to be devised, capturing the relationship between the goals and the knobs.
Then, the controller is designed, a complex task with different approaches and controller
types (e.g., time-based, knowledge-based, etc.). Finally, the controller is implemented and
the system is tested and validated.

2.2.2 Controllers

PID Controllers. PID controllers are a popular, time-based control technique. They do
not require an explicit model: instead, they can be tuned based on experimentation and
heuristics [16]. In this technique, the control input is computed according to

u(k) = u(k − 1) + K∆e(k)︸ ︷︷ ︸
proportional

+
Kh

Ti
e(k)︸ ︷︷ ︸

integral

+
KTd
h

[∆e(k) − ∆e(k − 1)]︸ ︷︷ ︸
derivative

(2.1)

12

0 500 1000 1500 2000 2500

Time (seconds)

0

20

40

60

80

100

Overshoot

Setpoint

Temperature

Controller output

Proportional

Integral

Figure 2.5: Example of a PI controller in a water boiler simulation.

where h is the sampling time of the controller, and K, Ti and Td are the parameters of the
controller. There are three main components of the controller:

• The proportional term is proportional to the error between the setpoint and actual
value, generating a corrective response in the presence of an error. If the gain factor
K is too large, the actual value may oscillate.

• The integral term integrates past values of the error, accelerating convergence towards
the setpoint and mitigating steady-state error from purely using the proportional
term, but can cause the actual value to overshoot the setpoint.

• The derivative term uses the slope of the error over time to improve settling time
and reduce overshoot.

The integral and derivative terms may each be excluded if the other terms are adequate in
causing the controller to meet the setpoint with minimal overshoot and oscillation. Figure
2.5 shows a simulation with only the proportional and integral terms set and derivative
term excluded.

Knowledge-Based Controllers. Conventional controllers require a correct design and
specific mathematical processes which may not be feasible to easily approach or gener-
alise in the software engineering domain for complex systems such as cloud applications.
Knowledge-based controllers allow a higher level of control by augmenting knowledge about
the system with monitoring information using a reasoning engine.

2.3 Modelling and Forecasting

In this section, we introduce statistical techniques for modelling various forms of data
relevant to our work.

2.3.1 Random Sampling

Halton Sequence. Our work will use random number sampling in order to find deter-
ministic patterns without having to search an entire sample space. The Halton sequence
[19] provides a much more evenly distributed, random-like set of points when compared
against pseudorandomly generated numbers. This discrepancy in evenness can be seen in
Figure 2.6.

13

0.0 0.2
0.4

0.6
0.8

1.0 0.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2
0.4

0.6
0.8

1.0 0.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

Figure 2.6: 300 points of a [0, 1]3 Halton sequence compared with a pseudorandom source.

2.3.2 Time Series Analysis

A time series is a series of data points collected over time. Metrics collected over time in
a cloud environment can be represented as a time series, then analysed using statistical
techniques. We describe techniques relevant to our work below.

Least Squares Estimation. Given multiple predictor values (e.g., a set of parameters ob-
served over time), least squares estimation fits coefficients for these parameters to minimise
the sum of squared errors for a prediction [20]. Coefficients β0, β1, . . . , βk for parameters
x0, x1, . . . , xk are chosen to minimise

T∑
t=1

ε2t =
T∑
t=1

(yt − β0 − β1x1,t − β2x2,t − · · · − βkxk,t)
2 (2.2)

where the subscript t denotes values in a time series indexed between t = 1 and T .

Auto-Regressive Modelling. Auto-regressive models forecast a variable based on a
linear combination of the past values of the variable. Auto-regressive modelling can capture
patterns in a time series, such as how a spike in CPU usage is influenced by previous spikes.
An auto-regressive model of order p, AR(p), is defined as

Xt = c+
∑
p

ϕiXt−i + εt (2.3)

where ϕ1, ϕ2, . . . , ϕp are the parameters of the model, c is a content and εt is white noise
[21].

ARIMA. ARIMA is another approach to time series forecasting, where auto-regressive
modelling is combined with moving average modelling (similar to AR(p), but uses past
forecast errors instead of past forecast values).

Granger Causality Testing. Granger causality tests can determine whether a time
series is useful for predicting another time series. Giles [22] states an informal definition,
where in the case of two time-series variables X and Y, “X is said to Granger-cause Y if
Y can be better predicted using the histories of both X and Y than it can by using the

14

history of Y alone”. To perform the test, X is compared with time-lagged versions of Y
using an F-test, and the null hypothesis that X does not Granger-cause Y is rejected if the
p-value is below a critical value [23].

Kolmogorov-Smirnov Testing. A two-sample Kolmogorov-Smirnov test (K-S test) can
compare the similarity of two sampled continuous probability distributions [24]. In queuing
theory, response times are typically modelled using exponential distributions [25]; the
K-S test can be used here by obtaining a distribution of response times from captured
data.

2.3.3 Clustering

Cluster analysis involves grouping together similar data points, commonly used for classi-
fication purposes. We describe k-means and k-shape clustering below, both of which scale
linearly with the number of metrics.

K-means Clustering. The k-means algorithm divides data into k clusters by initially ar-
bitrarily selecting k centroids, then iteratively re-computing centroid positions to decrease
intra-cluster distances and inter-cluster distances until convergence [21]. The Euclidean
distance is often used as the distance metric.

K-shape Clustering. K-shape clustering is a recent clustering algorithm applicable to
time series which uses a novel distance metric called shape-based distance [23]. This metric
considers the shape of two time series, with the advantage that it can detect similarities
even if one lags behind another in the time dimension. The algorithm works by initially
assigning time series to clusters randomly, then iteratively computing new centroids using
shape-based distance until convergence.

2.3.4 Dimensionality Reduction

Principal Component Analysis. Principal component analysis (PCA) is a technique
for reducing the dimensions of a dataset which, given a high-dimensional dataset, outputs
a set of linearly uncorrelated principal components. Principal components can then be
analysed to discover variables which strongly vary together for each principal component.
Hence, PCA can be used to discover significant parameters in datasets by capturing a large
number of parameters and their effects.

15

Chapter 3

Related Work

In this chapter, we describe and discuss work related to our aims. In Section 3.1, we describe
earlier approaches for the adaptive resource management of cloud applications using control
theory, the basis for our project. Then, in Section 3.2, we describe approaches to modelling
workloads by analysing parametric dependencies and creating robust performance models.
In Section 3.3, we discuss modelling dependencies between cloud workloads using statistical
techniques. Finally, in Section 3.4, we discuss reference applications available for use in
our evaluation.

3.1 Brownout and Control Theory in Adaptive Resource Man-
agement

Klein et al. [3] introduce brownout, a self-adaptive technique for cloud applications to be
more resilient against unpredictable runtime variations such as flash crowds and unexpected
hardware failures. In brownout, optional components are identified, and a controller varies
the proportion of user requests where the optional components will not be processed. This
proportion is dynamically varied by the controller in response to an indicator of system
load (i.e., the maximum response time captured during the last control loop).

In evaluating the brownout technique, Klein et al. [3] demonstrate the potential of
brownout to improve business objectives: using a demo e-commerce application augmented
with an optional recommendation system, the authors demonstrate that brownout com-
pliance leads to lower latency under high load, correlated with better user experience and
higher revenue. However, instrumenting brownout by changing feature code conflates the
responsibilities of feature teams and reliability engineering teams, limiting the scalability
of this approach in a real-world environment. Additionally, in this technique, qualitative
business effects are secondary to reducing overall maximum response time. In contrast,
we will allow the business impact of dimming particular components to be directly in-
volved in the decision process and instrument dimming through more developer-friendly
approaches.

Dürango et al. [26] and Klein et al.’s later work [27] focus on the applicability of brownout
in real-world scalable systems scenarios by investigating load balancing techniques which
maximise optional components served while keeping response times low, further improving
user experience. The authors’ architectures both consist of a load balancer distributing
requests to application replicas, where each replica has an independent brownout con-
troller. Dürango et al. first find that a common, non-brownout aware algorithm, Shortest
Queue First (SQF), is adequate in meeting these goals, then introduce novel algorithms

16

which allow the load balancer to make decisions which take into account dimming levels.
Klein et al. then improve the load balancer performance by making the brownout-aware
algorithms fully event-driven, where controller parameters update per-request instead of
periodically. In contrast to modifying feature code, these works showcase contributions at
an architecture layer which is more natural for DevOps engineer to be working on; our
work will continue investigating brownout at this layer.

Xu and Buyya [28] propose a taxonomy of brownout approaches to adaptive resource man-
agement. The authors characterise approaches to brownout by comparing their features in
each phase of the MAPE-K loop. The authors then propose a model for brownout-enabled
cloud computing systems, with three requirements: (1) applications must be composed
of mandatory and optional services, which must be identified beforehand; (2) a controller
based on the MAPE-K model must be used to control brownout; and (3) the knowledge
pool of the MAPE-K model balances tradeoffs between desired metrics. The authors then
identify future research directions in areas including developer usability, applications of
brownout to different metrics such as energy efficiency, and augmentation of brownout
with other resource management techniques. The proposed model provides a basis for the
architecture of this project.

Kotegov and Filieri [4] overcome Klein et al.’s limitations of requiring codebase changes
by performing brownout and resource auto-scaling at the orchestrator level. In keeping to
Xu and Buyya’s [28] model, the authors implement a custom Kubernetes ingress controller
behind a HAProxy load balancer, where load balancing rules are adaptively set using a
PI controller to dim components, bringing the average response time close to a configured
setpoint. Unlike Dürango et al. and Klein et al.’s load balancing work, Kotegov and Filieri
shift the entire brownout process to the load balancing layer, requiring no feature code
changes. Additionally, the authors take an alternative approach of working with replicas
by allowing the controller to scale the number of replicas in response to load, though a
limitation with this auto-scaling is that changes are not precisely or immediately reflected:
Kubernetes runs its own, conflicting heuristics to decide whether the new scale targets
should be met. Overall, this orchestrator-level approach is more developer friendly and
our work will build upon this approach by allowing individual components to be dimmed
at different rates depending on developer-specified parameters.

3.2 Performance Modelling and Parametric Dependencies

A significant challenge to overcome with our work, where real-world systems usually have
more than one optional component, is that dimming components at different rates can
reduce performance due to interactions between components, either from code dependencies
or changes in user behaviour. In this section, we investigate a field which seeks to more
formally understand these interactions.

Eismann et al. [29] introduce a method of accurately modelling the performance of a system
by generating relationships called parametric dependencies between system components
and their performance properties, based on component inputs and correlations between
these inputs. The authors model on data captured from run-time monitoring, instead
of modelling at design-time, in order to capture the variation of performance based on
different workload mixes. System modelling for resolution of these parametric dependencies
is implemented using the Descartes Modelling Language (DML). This work can be useful in
the context of brownout, where knowing the impact of dimming a particular component on
the response time of its dependencies can inform better dimming decisions. However, the
authors’ technique is not developer-friendly or scalable to large systems: DML knowledge

17

is required and a precise model of a system’s dependencies needs to be created beforehand,
which is time-consuming for large systems.

Ackermann et al. [30] describe a machine learning approach to characterise parametric
dependencies given a set of identified potential dependencies and run-time monitoring
data. The authors’ technique first generates a decision tree to choose a machine learning
algorithm based on characteristics of the available data, and then applies the algorithm
on the data to generate the resulting parametric dependencies. This technique improves
on the usability limitations of Eismann et al. [29] as a precise model of dependencies
is not needed beforehand. Additionally, the authors evaluate on the same model used
by Eismann et al., achieving acceptable results. However, potential dependencies still
need to be identified beforehand and implementations require experience with monitoring
frameworks (Ackermann et al. suggest the Kieker framework), again limiting real-world
usability.

Ackermann et al. [30] also observe that automatically identifying parametric dependencies
involves static code analysis which is unsuitable for modelling distributed service-oriented
architecture. However, more recent research by Grohmann et al. [31] proposes using ma-
chine learning techniques to automatically detect parametric dependencies from monitor-
ing data. The authors use the Kieker framework configured with custom metric collection
probes to monitor data, then choose and apply a feature selection algorithm to identify
the dependencies. This work removes the need for developers to manually identify para-
metric dependencies before the dependencies can be automatically characterised; however,
specialised monitoring tools are still required to collect the data needed for this technique,
hence we will investigate a trade-off between configuration and automatic detection of
parametric dependencies.

Bauer et al. [32] present Chamulteon, which demonstrates the application of performance
modelling to the adaptive resource management of microservices-oriented architecture.
Chamulteon allows the coordinated scaling of multiple services, which contrasts against
previous works which are prone to bottleneck shifting, where services are each placed behind
independent scalers. The auto-scaler consists of a reactive and proactive component, both
of which rely on the utilisation metric from queueing theory. The proactive component is
particularly novel: a performance model implemented in DML is used for forecasting and
estimation. The authors evaluate Chamulteon on a Docker deployment, showing accurate
auto-scaling without bottleneck shifting. With performance modelling demonstrated in
auto-scaling, further work could involve bringing this technique to other adaptive resource
management areas such as brownout, though the requirement for DML knowledge is still
a limiting factor.

3.3 Statistical Approaches to Resource Management

In contrast to the previous section, this section details techniques to understand and pre-
dict system behaviour which do not require specialised performance modelling knowledge,
motivating developer-friendly approaches in our work.

Shah et al. [33] introduce a machine learning approach to extracting dependencies between
microservices. The authors take a novel approach of training a long-short term model
(LSTM) to learn the relationships between monitored time series data of a cloud application
(i.e,. CPU, memory, network receive and network transfer for each microservice), then
inspect properties of neurons in order to determine the most significant predictors. For
example, in a setup consisting of an application service and database service, the authors
find that application network receive, transmit and CPU are strong predictors for the

18

database transaction. The authors also determine that their approach leads to greater
accuracy than other time series analysis techniques like ARIMA and Granger causality
tests. The key limitation is that training is computationally expensive, requiring powerful
hardware, hence, our work will focus on traditional statistical techniques.

Apte et al. [21] present a scalable, accurate workflow for discovering dependencies between
virtual machines by performing time series analysis on CPU utilisation. The workflow
consists of three steps: first, the authors monitor CPU utilisation for each virtual machine
over a sampling period of around one second; then, auto-regressive modelling is applied to
each time series; finally, k-means clustering is used to group virtual machines by distances
between their AR models. The authors show that they are able to identify dependencies
with a 97.15% overall accuracy rate. Though this paper focuses on virtual machines, we
are able to easily apply the same techniques to identify correlations in a Kubernetes envi-
ronment as the orchestrator makes inter-pod metrics available, and the authors’ workflow
consists of well-known, straightforward techniques.

Thalheim et al [23]. present Sieve, a general purpose microservices metrics analysis frame-
work. Sieve analyses the call graph and time series of metrics for each microservice in a
deployment, applies k-shape clustering, then applies Granger causality tests to establish a
dependency graph to determine causality across microservices. The authors demonstrate
the application of Sieve on real-world examples for auto-scaling and root cause analysis,
with a focus on accuracy and developer usability, also sharing their code on GitHub1.
Compared to Apte et al. [21], Thalheim et al. more convincingly justify their choices
of statistical methods in the context of time series analysis and microservices architec-
ture. Hence, the authors present strong candidates for statistical approaches to use in our
work.

Kim et al. [34] present a technique which uses principal component analysis and factor
analysis to schedule workloads onto a scientific computing cloud environment, optimising
the deployment of a task given a choice of target cloud sites. The authors find principal
components based on historical data for combinations of task input parameters, cloud site
resource metrics and execution times, then schedule new tasks onto optimal sites based
on these principal components. Our work could also use PCA for factor analysis of our
service parameters, however, as stated by Thalheim et al. [23], the results of PCA are not
easily interpretable compared by developers to other clustering techniques.

3.4 Reference Applications for Microservices

There are several reference applications for microservices which we can use to evaluate
our work. To motivate our evaluation framework, we present and discuss four candidate
reference applications below.

JPetStore-Kubernetes. Kotegov and Filieri [4] use JPetStore-Kubernetes2, a container-
ised version of a monolithic Java web app orchestrated with Kubernetes. This application
is composed of three services: a Java web application, a Go image search microservice
and a MySQL database. This choice was reasonable for Kotegov and Filieri’s use case of
dimming the entire application. However, our use case involves dimming at a service level.
Hence, the architecture is not decomposed enough to be used in our project.

Sock Shop. Sock Shop3 is a demo shopping cart where features (cart, catalogue, etc.)
are split into no more than ten separate Kubernetes services. Services are well-composed

1https://github.com/sieve-microservices/
2https://github.com/IBM-Cloud/jpetstore-kubernetes
3https://github.com/microservices-demo/microservices-demo

19

https://github.com/sieve-microservices/
https://github.com/IBM-Cloud/jpetstore-kubernetes
https://github.com/microservices-demo/microservices-demo

enough for our use case of dimming at a service level. This application has been widely
used in the past: Gias et al. [35], for example, use Sock Shop to demonstrate model-driven
auto-scaling for microservices. Additionally, Sock Shop demonstrates polyglot architecture
well: services use different languages and frameworks, which help motivate requirements
for our implementation. However, one limitation is that the load testing tool for this
application must be able to handle conditional runtime logic: previous work with Sock
Shop has shown that there are minor bugs which will need to be mitigated, such as the
checkout process only working if the cart total is less than a certain value.

TeaStore Von Kistowski et al. [36] present TeaStore4, a reference application designed
for benchmarking, modelling and resource management, deployable on Docker and Ku-
bernetes. TeaStore is composed of six services. Like JPetStore-Kubernetes, TeaStore
encapsulates its web application in one service. The other services are for backend ser-
vices for authentication and content provisioning (e.g., provisioning images and generating
recommendations).

TeaStore is unique in its testing and benchmarking tooling. Designed for performance
modelling, the application is pre-instrumented to allow the Kieker monitoring framework
to automatically generate logs, including at a method call parameter level. Additionally,
the authors have tested TeaStore with two load generators, LIMBO and JMeter, and
profiles for these tools are publicly available5 in their online documentation. In comparing
TeaStore to Sock Shop, the authors identify that TeaStore meets the same requirements
for what a microservice benchmark should have; however, TeaStore also has the advantage
of meeting these additional research requirements of benchmarking.

Train Ticket. Zhou et al. [37] present Train Ticket6, a ticket booking system designed
to bridge typical benchmark microservice applications with applications found in industry,
with greater complexity, better testing and better conformance to microservices design
principles compared to existing benchmark applications. The system contains over forty
microservices, with up to five layers of dependencies between microservices.

Train Ticket has a unique design of splitting up microservices for exploring, reserving and
ordering train tickets into two classes: high-speed trains and normal-speed trains. The
authors use this design to demonstrate the potential for resources for these two classes of
microservices to be independently adjusted based on user demand. This design can be
particularly useful for our goals of a discriminate dimming approach. However, we are
unable to use this for our project: during preliminary testing, we have experienced bugs
in its user interface, as well as some text being displayed in the authors’ native language,
which restricted our usability of this application.

4https://github.com/DescartesResearch/TeaStore
5https://github.com/DescartesResearch/TeaStore/wiki/Testing-and-Benchmarking
6https://github.com/FudanSELab/train-ticket

20

https://github.com/DescartesResearch/TeaStore
https://github.com/DescartesResearch/TeaStore/wiki/Testing-and-Benchmarking
https://github.com/FudanSELab/train-ticket

Chapter 4

Kubedim

This project presents Kubedim, a self-adaptive, brownout-enabled reverse proxy which
applies brownout strategies on optional components of a cloud application in order to meet
both system stability and business objectives. Like with Kotegov and Filieri [6], Kubedim is
designed to be deployed within a Kubernetes cluster in a developer-friendly manner. With
Kubernetes’ popularity in production deployments of microservices-based applications [38],
the choice of Kubernetes contributes to the goal of Kubedim’s applicability to real-world
use cases. This section presents an overview of Kubedim, with further implementation
details discussed in the sections which follow.

4.1 Brownout Strategies

From Klein et al. [3] to Kotegov and Filieri [6], all previous implementations of brownout
have uniformly dimmed optional components by the same parameter while a system is
under load. In contrast, Kubedim implements Kotegov and Filieri’s uniform dimming
strategy as a baseline strategy, then introduces two non-uniform brownout strategies: non-
uniform dimming based on component weightings, and non-uniform dimming based on user
profiling.

4.1.1 Baseline Dimming

Kubedim’s most basic brownout strategy, as with prior related work, is to dim optional
components uniformly proportional to system load. In Kubedim’s implementation of this
brownout strategy, brownout starts when the response time at a given percentile exceeds
a given setpoint (e.g., 3s at the 95th percentile). As with Kotegov and Filieri [6], the
dimming parameter is a percentage between 0% and 100% which increases as system load
increases, and represents the probability that the request for an optional component will be
dimmed. If the dimming parameter is 0%, the optional component will never be dimmed;
if the dimming parameter is 100%, the optional component will always be dimmed.

4.1.2 Component Weightings

Dimming by component weightings addresses two key considerations. First, Bauer et al.
[32] recognise that system components tend to contribute towards load unevenly, so dim-
ming can be more effective if components are dimmed in proportion to their individual
contributions to overall load. Second, optional components such as advertising and rec-
ommender systems may impact business objectives (e.g., advertisements and recommen-

21

dations), so ensuring that optional components are not unnecessarily dimmed may lead to
an improvement in business objectives.

This strategy is realised by assigning weightings to each optional component, represented
by a probability between 0 and 1. The dimming parameter from baseline dimming is then
weighted for each optional component by multiplying the optional component’s weighting.
Hence, a component which contributes more to load would be assigned a higher weighting
than a component which contributes less to load.

Kubedim also provides tooling to train this component weighting model offline, ensuring
that beneficial weightings can be chosen which do not cause side effects such as bottleneck
transfers. Where non-optimal weightings are given, Kubedim also provides an option
to perform online training, improving component weightings live in production. This
ecosystem is explained in further detail in Section 4.3.

4.1.3 User Profiling

Dimming by user profiling is motivated by two considerations relating to business objectives
and user experience. First, if users can have their tendency to meet business objectives
identified by the dimmer, then optional components can be tailored towards higher-priority
users, resulting in a positive impact to business objectives. Second, both the baseline
dimming and component weightings strategies can reduce user experience due to optional
components intermittently and inconsistently disappearing under high load, motivating a
strategy which can provide a better user experience through stronger consistency.

This strategy consists of profiling users based on their session request history, then dimming
a number of users for their entire session proportional to system load. User profiling is
performed asynchronously by applying a set of rules specified by the developer based on
the users’ session request histories. Then, optional components for a number of low priority
users proportional to system load are dimmed for the entire duration of the users’ sessions
while optional components always display for high priority users, leading to more consistent
and predictable application behaviour.

4.2 Deployment

Kubedim is deployed as a pod within Kubernetes as a reverse proxy which inspects HTTP
requests, forwarding requests to a backend pod when requests are not dimmed. Unlike
Klein et al. [27], orchestrating brownout at the reverse proxy level means that application-
level code does not have to be modified, increasing ease of developer usage. Figure 4.1 shows
the structure of a typical deployment, where existing pods are not modified. Deployment
instructions are provided in Appendix A.

Main
application

pods

External
Kubedim
tooling

Kubernetes cluster

Configuration files (ConfigMap)

Kubedim pods

Dimmer
service

Frontend
service

User request

Figure 4.1: Structure of a typical Kubedim deployment.

22

There are two reasons why Kubedim is implemented as a reverse proxy in a pod, instead
of following Kotegov and Filieri’s [6] implementation of extending a third party ingress
controller. First, production deployments likely already use ingress controllers for load
balancing and traffic shaping, so implementing at the ingress controller layer would de-
crease the ability for Kubedim to be quickly installed. Second, existing ingress controllers
possess limited extensibility for our advanced strategies: HAProxy and NGINX Reverse
Proxy are both declaratively configured around a limited set of rules, for example. Hence,
implementing Kubedim as an independent reverse proxy allows for easier installation by
users and implementation of more advanced features.

In order to manage Kubedim, administration endpoints are exposed on a port, allowing
system administrators to perform actions such as changing the brownout strategy and
overriding component weightings.

4.3 Configuration

Configuration for Kubedim is specified in YAML, the same configuration language used to
configure Kubernetes deployments, and is propagated to the dimmer pod via a ConfigMap.
A manual is provided, which can be found in Appendix A. As Kubedim is an application
layer reverse proxy, optional components are identified by the HTTP methods and paths
used to access the components. As a result, configuring Kubedim for baseline dimming is
straightforward, where only connection information and optional components need to be
specified.

dimmableComponents:
- path: "recommender"

method:
shouldMatchAll: true

probability: 0.5
- path: "news"

method:
shouldMatchAll: true

probability: 0.5
- path: "cart"

method:
method: "GET"

probability: 0.9

Listing 1: Excerpt of a Kubedim configuration file specifying optional components. Component
weightings are highlighted.

Listing 1 shows an example of how optional components can be specified, along with
advanced filtering options for cases such as a request path being used for both optional
and required components of a system.

The more advanced strategies, component weightings and user profiling, require further
configuration detailed as follows.

4.3.1 Component Weightings

Component weightings can be specified by providing probabilities for each path. However,
it can be difficult for developers to make educated guesses for the exact weightings to use:
dimming unevenly can cause side effects if optional components interact with each other
or cause user behaviour to change. As a result, Kubedim provides an offline training tool,

23

Ensure load
testing profile
for third party

load testing
tool is accurate

Fe
at

ur
e/

ar
ch

it
ec

tu
re

ch
an

ge

Start third
party load

testing tool's
server

Run the
Kubedim

offline training
tool, pointing it
to load testing

server

Update
ConfigMap

with resulting
component
weightings

Figure 4.2: Typical developer workflow for updating component weightings.

designed to be used in non-production (offline) environments, to model the contributions
of different weightings to overall system load and therefore predict the optimal weightings.
Modelling a black-box system requires a large amount of data, hence the tool takes on the
order of hours to run to gain sufficient data. The resulting weightings are then pasted into
the ConfigMap. A typical workflow is shown in Figure 4.2 and an example configuration
is highlighted in Listing 1.

Kubedim also provides a way to improve component weightings in a production (online)
environment in order to overcome sub-optimal weightings which result either from develop-
ers making guesses about weightings or from prediction errors in offline training. Prediction
errors usually originate from differences between simulated user behaviour during offline
training and actual user behaviour, or from noise in the model. This online training tool
works in a manner similar to A/B testing [39], continuously assigning a set of new can-
didate weightings to a small percentage of user sessions, in order to determine whether
candidate weightings perform better than the provided weightings. Online training can be
activated via the administration endpoint.

4.3.2 User Profiling

rules:
- description: "User has checked out items in past"

path: "/cart"
method:

shouldMatchAll: false
method: "POST"

occurrences: 1
result: "high"

- description: "User is browsing and unlikely to buy"
path: "/category.html"
method:

shouldMatchAll: true
occurrences: 5
result: "low"

Listing 2: Excerpt of a Kubedim configuration file specifying profiler rules.

User profiling requires two configuration steps: pointing Kubedim to a storage driver for
logging users’ requests and specifying a list of rules for users to be profiled with. Rules
are provided by the developer and are evaluated in sequential order, returning an unknown
priority if no rules are met. Listing 2 above shows an example of a rules configuration.

24

Chapter 5

Implementation

Kubedim is implemented in Go due to its prevalence in modern microservices architectures
[40], its use as the main language for the Kubernetes codebase and its higher performance
in cloud environment benchmarks against other languages such as Java and Python [41].
In this section, we detail implementation specifics and discuss design decisions.

5.1 High-level Architecture

Dimmer pod

Response
time

collector

Reverse proxy
(actuator)

PID
controller

User
request

Main
application

pods

Session profile
store (Redis)

Profiler
engine

Session request history
store (InfluxDB)

Administration Offline
training tool

Kubernetes cluster

Configuration files (ConfigMap)

Load testing
tool (k6)

Figure 5.1: The Kubedim architecture.

The architecture for Kubedim is shown in Figure 5.1. There are four main segments, as
follows:

• Pods for the original application are not modified.

25

• The dimmer is a single Go binary, deployed as a single pod. At the most basic
level, it acts as a reverse proxy, being placed between the external user and all
the pods of the original application. However, the dimmer is also responsible for
collecting and processing request data for the purpose of making brownout decisions.
An administration endpoint is also exposed, allowing dimmer settings to be changed
in realtime.

• The offline training tool is a Go binary designed to be run externally as part
of the weighted components training process. The tool interfaces with the dimmer
administration endpoint and a load testing tool in order to capture data to train a
model representing component weightings.

• The profiler is composed of two pods within the cluster and an external database.
Request details for every session are sent to the database. The request history
database is processed asynchronously at intervals by the profiler pod and profiled
sessions are stored in a key-value store pod for retrieval by the dimmer.

5.2 Proxying and Brownout with Adaptive Control

The dimmer consists of a lightweight HTTP reverse proxy augmented with hooks to cap-
ture and modify request and response data for brownout. As with prior work [3, 6], we
have chosen to follow a MAPE-K loop-based design, centred around a PID controller which
updates every second. This design increases the ability for developers to easily understand
brownout behaviour and does not have the complex tooling and expert knowledge require-
ments of traditional performance modelling or machine learning approaches.

5.2.1 Monitoring (Response Time Collection)

The metric used by Kubedim to quantify system load for brownout actuation is response
time at a specified percentile (50th, 75th and 95th are available). We specify a default of
the 95th percentile, a commonly seen percentile in SLAs, as five percent of users experi-
encing high response times in a medium-sized application may lead to discernible business
impact. Large enterprise companies like Amazon may have even stricter SLAs (i.e., at
the 99.9th percentile [42]), however, these SLAs would be too sensitive for medium-sized
applications.

Monitoring is implemented so that response time instrumentation adds minimal overhead
to each request. Capturing the response times of all requests over one second for querying
by the PID controller would require complex, time-indexed data structures or an external
time series database. Instead, like with HAProxy and other systems [6], a heuristic is used
where a fixed window of the n latest response times is stored. n is set to 100 by default,
a trade-off between a lower number, which would cause aggregations to be more sensitive
to changes in response time, and a higher number, where the window would capture a
wider distribution of response times. The fixed window is implemented locally in the same
process as the dimmer and the duration for each proxied request to complete is captured
and appended to this window.

5.2.2 Analysis and Planning (PID Controller)

Like with prior work [3, 6], we use a PID controller to provide a white-box, predictable
approach to responding to changes in response time. Though a PID controller needs to be
tuned, developer usability is retained as tuning a controller successfully does not require a
formal understanding of control theory and expected behaviour can still be achieved with

26

sub-optimal tuning parameters [43]. Based on our experience throughout this project, we
set default parameters which should not need to be overridden for most applications. When
necessary, the controller’s tuning can be customised by the developers to achieve specific
dimming properties or optimise the controller on specific features of the application.

At its foundation, Kubedim uses a standard PID controller which takes in the response
time at the specified percentile in seconds as input and outputs a dimming strength as a
percentage between 0% and 100%. The period of each cycle is set to 1 second by default,
long enough to capture a useful a sufficient distribution of response times and short enough
for actuation to be responsive.

The setpoint is set to a default of 3 seconds, following Google’s research into page aban-
donment for sites which take longer than 3 seconds to load [44]. Hence, in the default
configuration, for 95th percentile response times below 3 seconds, the controller will out-
put 0%; for greater response times than 3 seconds, the controller will output a non-zero
percentage proportional to the difference from the setpoint.

For the default tuning, we set the proportional gain to 2, integral gain to 0.2 and derivative
gain to 0. Typically, tuning would involve a systematic method such as the Ziegler-Nichols
method [16], however, we found tuning based on our understanding of the system to be
sufficient. These parameters are justified as follows:

• The proportional gain is set to a small number so that as the response time begins to
violate the setpoint, the system has a chance to stabilise with only a small percentage
of requests being rejected. Systems under high load which do not stabilise at this
point typically quickly incur tail response times reaching tens of seconds, to which
the proportional gain responsively yields an output in the tens of percents.

• The integral gain is set to ensure the dimming percentage still increases if the response
time remains constant above the setpoint, and to ensure the dimming percentage is
sustained when the response time is brought down to the setpoint. A small value of
0.2 is used as larger values cause the integral gain to be more sensitive, leading to
overshoot and oscillation.

• The derivative gain is set to zero as derivative gain is semantically a prediction of the
near future evolution of the input signals, which we do not need to rely on to achieve
expected results. Most PID controllers, in fact, do not use the derivative term [45].

Finally, the controller is implemented with two additional features:

• Exponential smoothing is performed on the input with a smoothing factor of 0.9.
During experimentation, we found that exponential smoothing reduced oscillations
in the dimming percentage resulting from noise in the input response times.

• Anti-windup is implemented to prevent excessive overshooting in dimming percentage
due to accumulation of integral action over longer times when the target response
time is not achieved, or cannot be achieved, with the available resources [45].

5.2.3 Execution (Reverse Proxy Actuation)

Like with Kotegov and Filieri [6], when a request arrives at the dimmer, the reverse proxy
either forwards the request to the actual application and returns the response to the user, or
it immediately returns the HTTP 427 Too Many Requests error code to the user. However,
instead of setting a rate limit proportional to the dimming percentage, we opt for a more
direct, probabilistic approach which allows for more control, particularly with advanced
brownout strategies.

27

The probabilistic approach for baseline dimming is simple: the probability that a request
is dimmed is equal to the dimming percentage. If a request method and path represent an
optional component, then a randomly sampled number between 0 and 1 is compared against
the dimming percentage. If the sampled number is less than the dimming percentage, the
request is dimmed with 427 Too Many Requests. Otherwise, the request is not dimmed
and is proxied as normal.

More advanced brownout strategies build upon this probabilistic approach, explained in
the following sections.

5.3 Component Weightings

Dimming by component weightings is actuated by modifying the probability check in
baseline dimming. Instead of directly comparing a sampled number against the dimming
percentage, the sampled number is compared against the weighted dimming percentage,
Dimming Percentage × Weighting for Optional Component. As the weighting for an op-
tional component is between 0 and 1, a weighting which is less than 1 will cause a com-
ponent to be less likely to be dimmed. Likewise, if all weightings are set to 1, the system
behaves equivalently to baseline dimming.

5.3.1 Offline Training

Randomly
sample and set

component
weightings

Send a fixed
amount of load
for a fixed time

via the third
party load

testing server

Retrieve the
response time
distribution

and save as a
linear equation

Run linear
regression on
list of linear
equations to

obtain
weightings

Figure 5.2: The offline training loop.

As it is difficult for developers to make educated guesses about what component weightings
to choose, Kubedim provides a tool for predicting the weightings on a non-production
environment.

The offline training tool uses linear regression to perform training. In this model, the
independent variables are the component weightings and the dependent variable is the
response time at the developer’s chosen percentile. Training a linear regression model on
the effects of different component weightings on the response time of an application outputs
a linear equation, where the coefficients describe the effect of dimming a component on
the overall application response time. For example, response time = 7.5 + news*-1.5
+ cart*-15.3 implies dimming the cart endpoint more strongly than the news endpoint
will have a greater impact on reducing the overall application response time.

This a posteriori approach is a simpler, more effective approach than the a priori related
work [30, 32] which require expert knowledge combined with advanced modelling theory.
By sampling a large number of combinations of component weightings, the regression model
is able to fit around side effects, such as cases where dimming components unevenly instead
causes an increase in response time. Hence, the need for the developer to understand
dependency analysis and complex performance modelling techniques to prevent side effects
is obviated; instead, they must ensure observed response times reflect real-world system
behaviour, a task explained below.

28

In practice, as shown in Figure 4.2, the developer runs the training tool in conjunction
with a load testing tool with a load profile configured to simulate real-world usage. Given
the use of user simulations in system testing and chaos engineering [46], it is a reasonable
expectation for developers to understand high-level user behaviour and be able to create ac-
curate load testing profiles. Currently, only the k6 load testing tool is supported; however,
the training tool has been implemented with the adapter pattern for future compatibility
with other load testing tools.

Figure 5.2 shows the main steps of the offline training tool. In each iteration, the following
steps are performed:

1. The tool sets a randomly sampled set of component weightings via the non-production
environment’s dimmer administration endpoint. The Halton sequence is used for
sampling a more evenly-covered distribution of points [19].

2. The offline training tool interfaces with the load testing tool to send a fixed level of
load for a fixed amount of time.

3. The offline training tool retrieves the response time distribution from the adminis-
tration endpoint.

After all iterations are complete, all response time distributions are fit to a linear regression
model and the resulting coefficients are normalised into probabilities between 0 and 1
(pi = xi−min(x)

max(x)−min(x)).

5.3.2 Online Training

Load testing profiles will never perfectly simulate real-world usage and it is infeasible for
developers to run offline training for every feature change, given comprehensive offline
training can take on the order of hours to gather enough data. As a result, online training
follows principles of A/B testing in order to improve the given component weightings. Here,
users are divided into a control group, which experiences the developer’s given component
weightings, or a candidate group, which experiences a randomly sampled set of component
weightings.

Online training seeks to balance strict, high-value component weightings which decrease
system load, with relaxed, low-value component weightings which increase component
availability and therefore improve business objectives. Figure 5.3 shows this overall be-
haviour of the online training loop.

Apply random
variations to
control group

component
weightings and

assign to
candidate group

Wait two
minutes

Retrieve
response time

distributions of
control and
candidate

groups

Yes

No

Significant
improvement?

Set control (main)
weightings to candidate

weightings and wait
three minutes

St
ar

t

Figure 5.3: High-level behaviour of the online training loop.

29

When enabled through the administration endpoint, the online training service labels new
sessions as belonging to either the control group or candidate group, which is persisted by
setting a cookie. By default, 5% of requests are assigned to the candidate group, a trade-off
between ensuring only a low number of users experience potentially non-optimal component
weightings and ensuring enough response times are captured to make a comparison against
the control group.

The online training loop runs every three minutes – a trade-off between being responsive to
changes in load profiles and capturing enough data in both groups. During each iteration,
the following steps are made:

• New candidate component weightings are randomly sampled for only component
per iteration, with the remaining components using their respective control group
weightings.

• Response time distributions are captured for both control and candidate groups over
three minutes.

• If the sampled weighting has decreased in the candidate group, the candidate group
95th percentile response time is within 3% of the control group response time, and
there is an insignificant difference in response time distributions (via a Kolmogorov-
Smirnov test at the 95th percentile), the control group weightings are replaced with
the candidate group weightings. This occurs if the system stays stable when compo-
nent weightings are relaxed, therefore increasing availability of the optional compo-
nent under load.

• If the sampled weighting has increased in the candidate group, the candidate 95th
percentile response time is lower than the control group response time, and there
is a significant difference in response time distributions (via a K-S test at the 99th
percentile), the control group weightings are replaced by the candidate group weight-
ings. This occurs if the system becomes more responsive when component weightings
are more strict, therefore increasing stability of the system under load.

• If control group weightings have been replaced by the candidate group, online training
pauses for a three minute cool-down period in order for the system to adjust to its
new component weightings.

Our percentages and percentiles for the above statistical tests have been set based on
experimentation to reduce both false positives and false negatives.

5.4 User Profiling

Profiling is implemented as a rules-based system, leveraging the developer’s basic knowl-
edge about their system and user flows in order to classify users. This contrasts against
more advanced user profiling methods such as clustering approaches, where advanced in-
strumentation and analytics pipelines are required to gather data for training and classifi-
cation. Profiling works by processing rules on a list of requests for every session. Once the
priority of a session is determined, a long-lived decision to dim all optional components
for the session is made (in contrast to dimming per-request), providing a more consistent
experience for the user.

30

5.4.1 High-Level Implementation

Profiling sessions and logging session data within the dimmer would add too much over-
head. Instead, we split up Kubedim’s profiler into three components, as shown in Figure
5.1:

• A Redis key-value database stores the resulting priorities of profiled sessions. As an
in-memory key value store, the dimmer reverse proxy can query the store with low
overhead.

• Session request histories are stored in an external database. In its current implemen-
tation, Kubedim can be changed to support any popular database engine. However,
a time series database, InfluxDB, is specifically chosen as future implementations
of Kubedim may support rules which involve the time axis. InfluxDB also allows
data to be persisted asynchronously, reducing the overhead of recording requests per
session in the reverse proxy.

• The profiler engine asynchronously processes sessions which do not have priorities
assigned at regular intervals according to developer-specified rules. This interval-
based approach reduces overall system load as profiling is not a time-sensitive action.

5.4.2 Profiling Lifecycle

Dim

Fetch session priority
from Redis (set

to unknown if non-
existent)

No

Is session
dimming decision

present?
Yes

No

Is session
dimming decision

set to true?
Yes

Proxy
without

dimming

Is session
priority
present?

Low/High Unknown
What is

session priority
set to?

Request

Set session
dimming decision to true

with corresponding
dimming decision

probability, false otherwise Dim proportional
to PID output (as

normal)Yes

No

Figure 5.4: Decision tree showing actions taken by the dimmer’s actuation module.

There are two phases in profiling in the lifecycle of a request, as shown in Figure 5.4.

Profiling Session History

The first phase involves profiling session history. The developer specifies the name of the
cookie which identifies a session in their original application. All requests with a session
cookie present are saved to InfluxDB. Session history in InfluxDB is fetched and evaluated
by the profiler in fixed intervals according to developer-specified rules, setting a session
priority cookie with the resulting priority.

31

In our current implementation of rules processing, we take a simple yet effective approach
of allowing developers to specify in each rule that a session should be assigned a specified
priority if the user has visited an endpoint more than a specified number of times. An
example is shown in Listing 2. This allows priorities to be assigned with conditional
statements based on developers’ knowledge of user behaviour. For example, in a shopping
cart application, a user may be considered high priority if they visit a shopping cart page
often, whereas they may be considered low priority if they are only looking at past order
details.

The session priority cookie can be set to one of three values, as follows:

• If a rule matches a session’s history, the session priority cookie will be set to the
resulting priority (either high or low) with a default expiry of 2 hours. This long
expiry is set to reduce profiler workload, justifiable as users are unlikely to change
behaviour during a session.

• If no rules are matched, either due to there being an insufficient number of requests
for the session or due to rules being non-exhaustive, the session priority cookie will
be set to unknown. The expiry for unknown sessions is set to a default of 2 minutes,
allowing the user to make more requests before the profiler next processes the session.

Dimming Decision

The second phase is responsible for the actuation of dimming. In order to actuate a long-
lived decision to dim all optional components for a session based on its profiled priority, a
dimming decision cookie containing a true boolean value is set which is sent along with all
requests for that session.

The dimming decision cookie is set by the actuator depending on presence and contents of
the session priority cookie. The cookie is set depending on two configuration parameters,
the probability of making a dimming decisions given a request is low priority, PL, and the
probability given the request is high priority, PH , which are set by default to PL = 0.05 and
PH = 0.95. The cookie has a default expiry time of two minutes, allowing for a trade-off
between responding to changes in the PID controller output and giving users consistently
dimmed user experiences.

If the dimming decision cookie is not present when a request arrives at the dimmer, the
actuator makes one of two decisions:

• If the session priority is set to unknown, the dimmer falls back to baseline dimming
without setting a dimming decision cookie.

• If the session priority is set to low or high, the probability that the resulting dimming
decision is set to true is

P (Dimming Decision = true) =

{
PID Output · PL·NL

PL(NL+1)+PH(NH+1) Priority = Low

PID Output · PH ·NH
PL(NL+1)+PH(NH+1) Priority = High

where NL and NH are the number of recent low priority and high priority sessions
respectively.

Dimming decisions are made with the PID output in mind to ensure that sessions are
dimmed in proportion to system load. The fractional part of the above equation exists to
handle the edge case where most or all of the requests are only of one priority type. For
example, if the system is under heavy load, but all requests are of high priority, we want
to dim a large number of high priority requests instead of only dimming the default of 5%
of requests.

32

Chapter 6

Sock Shop for Kubedim

We present Sock Shop for Kubedim, a modified version of Sock Shop with two areas of
significant changes: first, making changes to improve reproducibility of experiments and
second, the addition of optional components for testing brownout strategies. Figure 6.1
shows the architecture of this the modified system. In this chapter, we describe the changes
we have made and discuss the deployment of Kubedim on our variant of Sock Shop.

front-end

orders

payments

user

catalogue

cart

orders-db

user-db

catalogue-db

cart-db

shipping rabbitmq queue-master

recommender

news news-db

session-db

carts-reseeder

User

Admin

Kubernetes cluster

session-db

carts-reseeder

recommender

Figure 6.1: Architecture diagram of modified Sock Shop. Orange represents new pods; blue
represents modified pods.

6.1 Reproducibility

Our initial experimentation with an unmodified Sock Shop deployment yielded inconsistent
results which could not be reproduced. An investigation yielded that request response times
were linearly correlated with the size of the carts database and the size of the front-end
sessions store, and that both data stores grew rapidly during each load test. In achieving
more reproducible results for Sock Shop, we have built tooling to manage the number of
entries in the carts database, and fixed various bugs with session storage.

33

6.1.1 Carts Database

The carts-db microservice is a MongoDB database which is responsible for storing the
items in a cart for each session. Each row in the carts collection is an empty cart, with
items rows nested underneath. A new empty cart row is created every time Sock Shop
requests the number of items in a cart for a new session.

The main source of irreproducibility of Sock Shop experiments is that the response time
of all carts-db requests, be it querying, insertion or deletion, is directly proportional
to the number of entries in the database. For example, if there are no entries in the
database, queries can take single-digit milliseconds, whereas if there are 200,000 entries in
the database, queries can take hundreds of milliseconds.

To ensure reproducible experiments, there are two requirements: first, we must be able to
pre-seed the database with a set number of rows, and we must configure our experiments
to ensure that the growth in the carts database over the course of these experiments only
causes a negligible increase in query response time. For example, the difference in query
time for a database with 200,000 rows and 202,000 rows is negligible.

We achieve these reproducibility requirements by implementing a new microservice,
carts-reseeder, which allows us to view the number of rows in the carts database, delete
all rows in the database, and seed a specified number of rows with random GUIDs.

We did not decide to do the alternative of rewriting Sock Shop’s cart logic from scratch
to be efficient. First, Kubedim is designed to mitigate bottlenecks and scalability issues
such as these effectively. Second, the applicability of Kubedim is not prevented by the
current carts-db logic: only experimental reproducibility is affected. Likewise, there are
many more improvements we could make to Sock Shop, given it is a reference application
as opposed a production-grade system, but this would not be an aim of this project.

6.1.2 Session Storage

The front-endmicroservice is the main endpoint of a typical Sock Shop cluster, containing
a Node.js server which serves static files and connects external API endpoints with internal
microservices responsible for serving those endpoints. This microservice is also responsible
for maintaining session cookies, a source of various bugs which we fixed in order to improve
reproducibility of our experiments.

We first identified that the service was using a session handling library using a local, in-
memory store designed only for development usage. This caused front-end response times
to grow proportionally to the number of sessions, which we resolved by deploying a Redis
pod and switched to a production-grade Redis session driver, eliminating this issue.

Next, we identified that new sessions were being created with every request, leading to a
new row being created in carts-db for every request, causing carts-db queries to slow
down very quickly during the course of our experiments. We identified and fixed two causes
of this. First, the Node.js server used separate cookie decoder and session management
libraries with mismatched secrets, causing session cookies set by the latter library to not be
recognised. Second, cookies were not persisted due to use of res.end instead of res.send
when returning requests in some endpoints.

6.2 Optional Components

In order to experiment with brownout strategies, we modified the front-end microservice
to introduce three optional components: cart, news and recommender.

34

The Sock Shop user interface contains a cart button in the top-right corner of every page,
which also displays the number of items in the cart. This number is fetched with a call to
GET /cart on each page load, which causes a query to carts-db in the microservices call
stack. Recognising the contribution of carts-db to overall system load, we make this nu-
meric indicator an optional component, allowing load on carts-db to be alleviated.

Next, we add a news page to the front-end microservice (with endpoints GET /news.html
and GET /news) and a corresponding news microservice, representing updates for Sock
Shop’s company (e.g., delivery and stock updates). news is a Go microservice which, in
order to potentially find interesting results in brownout strategy experimentation, has an
artificially induced wait time sampled from a normal distribution with µ = 1, σ = 1. We
only mark /news as the optional component as it would be redundant to mark the static
page too.

Finally, we add a recommender microservice callable via GET /recommender, which sim-
ulates a system which recommends a single sock item. The front-end microservice is
modified to display recommendations in various catalogue and item pages. Like the news
component, we implement recommender in Go with an artificially induced wait time, sam-
pled from a normal distribution with µ = 2, σ = 2. The greater normal distribution
parameters reflect the increased time and variation it takes for a recommendation system
to fetch appropriate recommendations.

6.3 Deploying Kubedim

In order to deploy our version of Kubedim on our version of Sock Shop, we first follow
the user manual described in Appendix A, resulting in the configuration file described in
Appendix B.

...
dimmableComponents:

- path: "recommender"
method:

shouldMatchAll: true
probability: 0.0

- path: "news"
method:

shouldMatchAll: true
probability: 0.0366

- path: "cart"
method:

method: "GET"
exclusions:

- method: "GET"
substring: "basket.html"

probability: 1.0
...
profiler:

sessionCookie: "md.sid"
...

Listing 3: Excerpt of configuration values relevant to Sock Shop.

Listing 3 shows the most relevant part of our configuration, with the following features:

35

• Under dimmableComponents, we specify the paths of the three optional components
to be dimmed, along with whether dimming should only occur for a given HTTP
method or for all methods.

• With the cart endpoint, we do not want to dim GET requests which originate from
the basket page during the checkout process, so we also manually specify an exclusion.

• We specify component weightings from offline training for each component, detailed
further in Section 7.4.3.

• We specify the key of the cookie which Sock Shop uses to identify sessions, md.sid.

Kubedim is then deployed by running kubectl apply on the resulting manifest files.

36

Chapter 7

Evaluation

In this chapter, we primarily focus on the evaluation of Kubedim’s brownout strategies,
both in their ability to respond to load and their ability to meet typical business objectives.
Then, in Section 7.5, we evaluate our additional aim of investigating the developer usability
of Kubedim.

7.1 Kubernetes Setup

To evaluate brownout strategies, we first consider whether a system with baseline dimming
shows an improvement over a system without dimming. Then, we compare our three
brownout strategies with each other. To do so, we need a reference application to deploy
and test Kubedim.

We choose Sock Shop for Kubedim, introduced in the previous chapter, as our reference
application. Sock Shop is deployed on a physical Kubernetes cluster consisting of one con-
trol plane node and five pod-deployable nodes, with all with their specifications described
in Listing 4. An external InfluxDB data store used for profiling data is deployed on the
same network under a virtual machine, with specifications described in Listing 5.

OS: Ubuntu 18.04.5 LTS
Kernel: 4.15.0-140-generic x86_64
CPU: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz (8 cores)
GPU: NVIDIA GeForce 630 OEM
Memory: 15944 MiB
Kubelet version: v1.20.5

Listing 4: Specifications for all nodes in the Kubernetes cluster.

OS: Ubuntu 20.04.2 LTS
Kernel: 5.4.0-72-generic x86_64
CPU: AMD EPYC IBPB SSBD (4 vCPU cores), backed by 2 x AMD EPYC 7401 (24 cores)
Memory: 8192 MB
Network data-transfer rate: 10 GbE
InfluxDB version: 2.0.4

Listing 5: Specifications of the InfluxDB profiling virtual machine.

37

7.2 Load Testing Setup

We choose k6 as our load testing tool for sending load to our reference application. Un-
like prior work like which use Apache JMeter [6] or Locust [35], we use k6 due to its
configurability and ability to orchestrate load through its JavaScript and Go APIs.

In order to most accurately represent users, we have created user behaviour graphs with
probabilistic transitions between states, along with a highly-customised k6 script which
simulates these user behaviour graphs and collects data relevant to Sock Shop’s business
objectives.

7.2.1 User Behaviour Models

We have chosen to implement three user behaviour models: buying, browsing and news.
Users of the buying model are high priority users, likely to check out items. Users of the
browsing model are lower priority, browsing the catalogue without checking out an item.
Finally, users of the news model are the lowest priority users, who only visit Sock Shop’s
news endpoint to discover delivery updates and blog entries.

Scheduling and Attrition

We implement a scheduler where each page is represented by a state in the user behaviour
diagrams below. The scheduler is responsible for managing the transition to the next state,
as well as managing stochastic behaviour for our scheduler in order to more accurately
model user behaviour.

All page visits involve two actions in order to closely mirror browser behaviour. First, the
entire HTML page is fetched. Then, API endpoints are called in parallel using batched
HTTP requests, mirroring how Sock Shop fetches API endpoints asynchronously on page
load.

Stochastic behaviour consists of think time and attrition. First, the scheduler induces a
think time between each page visit, sampling the time from the uniform distribution with
range [2, 7]. Second, in order to model user impatience, the scheduler uses the maximum
response time of all non-optional components requested while visiting page. Attrition is
sampled based on a linear line starting from ~10% chance of attrition at 3 seconds, rising
to ~30% chance of attrition at 10s [44].

Buying

Figure 7.1 shows the user behaviour graph for a user which is likely to buy an item. The
key features of this model are as follows:

• Users who are buying items will immediately visit the catalogue. Users then visit an
item and return back to the catalogue.

• The probability that a user will continue visiting more items after returning to the
catalogue is 0.8.

• If the optional recommender component is enabled and a recommendation exists in
the catalogue, the user will visit this recommended item first. To simplify our chain
of decision processes, once a user visits a recommended item, they will not visit
further recommendations.

• When a user is visiting an item, the probability that the user will add the item to
their cart is 0.8.

38

Catalogue

GET /catalogue

GET /tags

GET /recommender

GET /cart

Homepage

GET /catalogue?size=5

GET /cart

Item

GET /catalogue/{id}

GET /catalogue

GET /recommender

GET /cart

Add item to cart

POST /cart

p=0.2 p=0.8

Yes

Cart empty?

End

Cart

GET /card

GET /address

GET /cart

GET /catalogue

POST /login

Check out cart

POST /orders

DELETE /cart

No

Recommend-
ation exists?

YesAlready visited
recommend-

ation?

No
Random number

<= 0.8?

No, visit
recommendation

Yes

No

Yes, user wants
 to browse item

Figure 7.1: User behaviour diagram for the buying load testing profile.

0.8 is chosen for our probabilities so that users are likely to perform these actions more
than once, but will be very unlikely to perform these actions more than ten times. This is
motivated by real-world shopping only involving a single-digit number of items.

Browsing and News

Homepage

GET /catalogue?size=5

GET /cart

Catalogue

GET /catalogue

GET /tags

GET /recommender

GET /cart

Item

GET /catalogue/{id}

GET /catalogue

GET /recommender

GET /cart

p=0.3

End

p=0.7

p=0.5

p=0.5

Figure 7.2: User behaviour diagram for the browsing load testing profile.

Homepage News

GET /catalogue?size=5

GET /cart

GET /news

GET /cart

End

Figure 7.3: User behaviour diagram for the news load testing profile.

The browsing and news profile are lower priority user types. Figure 7.2 shows the user
behaviour graph for a user which is only browsing for items. Probabilistic transitions
are added in order to model disinterest in items and to add variations in user behaviour.
Likewise, Figure 7.3 shows the user behaviour graph for a user browsing for news. The

39

main difference, however, is that the news endpoint is optional, given that a page dedicated
to delivery and company updates does not provide short-term income to the store.

7.2.2 Load Shape

The default load testing shape in our experiments is the constant load shape. At the
start of the experiment, we ramp up from 0 to 280 users over 10 seconds. At 10 seconds
from start, we sustain the number of users at 280, where each user immediately restarts
from their start state once their behaviour loop ends. After 30 minutes and 10 seconds
from start, we end the experiment. These parameters are justified as follows:

• Appendix C shows that Sock Shop with dimming disabled saturates after 290 users, at
which point the system becomes unstable and control group data cannot be captured.
Therefore, we use a slightly lower number of users.

• We run each iteration under load for 30 minutes (from an originally planned du-
ration of 5 minutes) to ensure that dimming behaviour is reliable. In particular,
Kotegov and Filieri [6] have observed unexpected behaviour over tens of minutes due
to Kubernetes’ complex pod scheduling algorithms [47].

The user distribution between profiles is as follows: 2/7 of users use the buying profile; 4/7
of users use the browsing profile; 1/7 of users use the news profile. In order to reduce side-
effecting carts-db behaviour described in Section 6.1.1, session cookies and the association
between virtual users and their profiles remain the same across behvaiour loops.

7.2.3 Data Collection

Our experiments require collecting data to evaluate the load mitigation effects of brownout,
and the business objective effects of brownout.

As a direct indicator of how the system responds to brownout, we capture response times
at the 50th, 75th and 95th percentile.

To evaluate the business objective effects of brownout with Sock Shop, we consider pur-
chases to be the main indicator of success. First, we record the number of items checked
out across an entire experiment. Next, as more items are usually checked out if the optional
recommender component is displayed, we also record the number of recommended items
checked out. Finally, as users leave the application due to long wait times, we also record
the number of attrition events.

7.2.4 Deployment

The load testing tool runs on a virtual machine with specifications given in Listing 6.

OS: Ubuntu 20.04.2 LTS
Kernel: 5.4.0-72-generic x86_64
CPU: AMD EPYC IBPB SSBD (4 vCPU cores), backed by 2 x AMD EPYC 7401 (24 cores)
Memory: 4096 MB
Network data-transfer rate: 10 GbE
k6 version: v0.30.0 (2021-01-20T13:14:50+0000/2193de0, go1.15.6, linux/amd64)

Listing 6: Specifications of the k6 load testing virtual machine.

The load testing tool is configured to send load to the Kubernetes cluster described in
Section 7.2. In order to reduce unexpected variations in response times, the tool is situated
on the same internal network as the Kubernetes cluster.

40

7.3 High-level Methodology

Our load tests are automated using a script which interfaces with our Kubernetes cluster
and load testing server. Before an experiment cycle, Sock Shop is pre-seeded with user
accounts which are re-used between sessions, shifting the overhead of registrations away
from the runtime of load tests. Experiments are repeated at least five times. However, we
did not notice significant variance across multiple runs and therefore plot graphs for only
one iteration in the experiments set out in this report. Scripts to reproduce the experiments
(including on different Kubernetes clusters) are open-sourced1. Each load testing iteration
is orchestrated as follows:

1. A request is sent to carts-reseeder to reseed carts-db with 200,000 rows. This
number is chosen as a few thousand requests are sent over the course of an iteration
and the increase in load as a result of these new rows in comparison to the existing
rows is negligible.

2. A request is sent to the dimmer administration endpoint to reset the state of the
PID controller.

3. A command is sent to k6 to orchestrate load using a given load shape, such as the
constant load shape introduced in Section 7.2.2.

4. The collected data is saved for output at the end of the experiment.

7.4 Brownout Strategies

In this section, we evaluate the load mitigation and business objective effects of Kubedim
by running load tests on our brownout strategies and comparing these strategies with each
other.

7.4.1 Baseline Dimming: Behaviour

Aims. (A) To validate our adaptive control theory approach by ensuring our response
time objective converges to its setpoint with minimal oscillations. (B) To ensure that
our controller is reactive to changes in the 95th percentile response time, in particular,
decreasing dimming once the server is no longer under high load.

Method. To investigate Aim A, we ran the constant load scenario described in Section
7.2.2 once with baseline dimming enabled, then once with no dimming at all, to provide
comparable data. We plotted response time (and PID output when baseline dimming is
enabled) against time and obtained statistics from the collected raw data for analysis. To
investigate Aim B, we used a flash crowd load shape shown in Figure 7.4 with baseline
dimming enabled only, and captured the same data as in Aim A. This load shape has more
gradual changes in the number of users, simulating brief periods of high load.

0 200 400 600 800 1000

Time (seconds)

0

100

200

N
u

m
b

er
of

U
se

rs

Figure 7.4: The flash crowd load shape, which sends load between 100 and 280 users.

1https://github.com/kcz17/manifests and https://github.com/kcz17/experiments

41

https://github.com/kcz17/manifests
https://github.com/kcz17/experiments

Results. Figure 7.5 shows the constant load test with dimming disabled, with raw data
showing a response time of µ = 5.25s, σ = 1.15s between 200 and 1810 seconds. Figure
7.6 shows the constant load test with baseline dimming enabled, with raw data showing a
response time of µ = 2.97s, σ = 0.743s and PID output of µ = 46.9%, σ = 1.6% between
200 and 1810 seconds. Figure 7.7 shows the flash crowd test for Aim B with baseline
dimming enabled.

0 250 500 750 1000 1250 1500 1750

Time (seconds)

0

5

10

15

20

25

30

R
es

p
o
n

se
ti

m
e

(s
ec

o
n

d
s)

Figure 7.5: 95th percentile response time graph for the constant load scenario with dimming
disabled.

0 250 500 750 1000 1250 1500 1750

Time (seconds)

0

5

10

15

20

25

30

R
es

p
on

se
ti

m
e

(s
ec

on
d

s)

0

20

40

60

80

100

P
ID

o
u

tp
u

t
(%

)

Setpoint

Response time

PID output

Figure 7.6: 95th percentile response time and PID controller output graph for the constant load
scenario with baseline dimming enabled.

0 200 400 600 800 1000

Time (seconds)

0

1

2

3

4

5

6

7

8

R
es

p
on

se
ti

m
e

(s
ec

on
d

s)

0

20

40

60

80

100

P
ID

ou
tp

u
t

(%
)

Setpoint

Response time

PID output

Figure 7.7: 95th percentile response time and PID controller graph for the flash crowd scenario
with baseline dimming enabled. Trend line is displayed with exponential weighted average over 20
seconds for readability.

42

Discussion. Figure 7.6 shows that the PID output responsively increased when the system
encountered load, successfully causing the 95th percentile response time to converge to the
setpoint. Furthermore, we see that the PID output stabilised quickly with no overshoot
and no significant oscillation. Hence, Aim A is met. Figure 7.7 shows that PID output
gradually reduced over the course of two minutes once the 95th percentile response time
returned below the setpoint, hence, Aim B is also met.

We see from our statistical results that dimming does introduce non-negligible noise. How-
ever, this variance of 0.743s is acceptable, particularly as the PID output would simply
increase to mitigate frequent setpoint violations as a result of noise. Moreover, the load
spikes shown in Figure 7.5 are completely removed in Figure 7.6 when baseline dimming
is enabled, suggesting greater system stability.

We also note that there is no observable side-effecting behaviour that would affect the
validity or reproducibility of our results. First, unlike the original Sock Shop, our variant
did not have an noticeable increase in mean response time over time due to growth in
carts-db data. Second, we did not observe any unexpected scheduling or load balancing
behaviour from Kubernetes’ orchestration cycles. This is expected as our news and recom-
mender components have response times independent of the number of replicas, and our
cart component is bottlenecked by carts-db, which cannot be replicated.

7.4.2 Baseline Dimming: Improvement over Dimming Disabled

Aims. To investigate the effect of baseline dimming on Sock Shop business objectives.

Hypotheses. (A) There is an increase in the number of items checked out when baseline
dimming is enabled. (B) There is an increase in the number of recommendations checked
out when baseline dimming is enabled.

Method. We ran the constant load scenario described in Section 7.2.2 for five repeats with
no dimming at all (control group), then for five repeats with baseline dimming enabled
(candidate group), collecting the number of items and recommendations checked out to
perform Welch’s t-tests for our two hypotheses.

Results. Table 7.1 shows the results of running the constant load with dimming dis-
abled and Table 7.2 shows the results of running the same scenario with baseline dimming
enabled.

Run Items Checked Out Attrition

Total of which
Recommended

1 14 7 2327

2 84 44 2205

3 17 14 2355

4 12 9 2343

5 70 42 2228

avg 39.4 23.2 2291.6

s 34.7 18.3 69.7

Table 7.1: Shopping metrics for five constant
load scenario runs with dimming disabled.

Run Items Checked Out Attrition

Total of which
Recommended

1 2393 884 1173

2 2387 882 1228

3 2301 871 1233

4 2298 862 1237

5 2188 938 1290

avg 2313.4 887.4 1232.2

s 83.5 29.6 41.5

Table 7.2: Shopping metrics for five constant
load scenario runs with baseline dimming en-
abled.

43

(A) The number of items checked out with baseline dimming enabled (µ = 2313.4, s =
887.4) was significantly higher than that of dimming disabled (µ = 39.4, s = 34.7), t(5) =
56.2, p < .001, one-tailed.

(B) The number of recommendations checked out with baseline dimming enabled (µ =
887.4, s = 29.6) was significantly higher than that of the dimming disabled control group
(µ = 23.2, s = 18.3), t(5) = 55.5, p < .001, one-tailed.

Discussion. We see a significant increase in both items and recommendations checked
out. This is expected as users encounter high response times and system instability when
dimming is disabled, causing the vast majority of users to leave before purchasing an item.
Dimming optional components under load brings the response time below our setpoint,
causing fewer users to attrite.

7.4.3 Component Weightings: Behaviour

Aim. To investigate the effect of the component weightings strategy on response time and
PID controller output.

Method. We obtained our component weightings by running the offline training tool for
our three optional components for 300 iterations with 280 users. We then ran the constant
load scenario described in Section 7.2.2 once with our obtained component weightings,
collecting PID output and response time data.

Results. Figure 7.8 shows the results of running the constant load scenario with our result-
ing component weightings in Listing 7. Raw data shows a response time of µ = 2.99s, σ =
0.71s and PID output of µ = 36.6%, σ = 1.7% between 200 and 1810 seconds.

Regression formula:
Predicted = 5.5879 + recommender*0.3293 + news*0.1449 + cart*-4.7103

Component weightings:
[{Path: "recommender", Coefficient: 0},
{Path: "news", Coefficient: 0.03660538384937473},
{Path: "cart", Coefficient: 1}]

Listing 7: Output of offline training command with resulting component weightings.

0 250 500 750 1000 1250 1500 1750

Time (seconds)

0

2

4

6

8

10

12

14

R
es

p
on

se
ti

m
e

(s
ec

on
d

s)

0

20

40

60

80

100

P
ID

ou
tp

u
t

(%
)

Setpoint

Response time

PID output

Figure 7.8: 95th percentile response time and PID controller graph for the constant load scenario
with component weightings set.

Discussion. We see from the offline training output that the cart endpoint was correctly
identified as the main contributor to system load in Sock Shop. The resulting graph in
Figure 7.8 not only shows that the expected dimming behaviour was followed, but also

44

shows a significant decrease in PID output when compared against the baseline dimming
behaviour graph in Figure 7.7 (46.9% to 36.6%). This is expected as the cart endpoint
is dimmed more heavily than the other optional endpoints. Hence, if there is a clear
bottleneck in system load which can be correctly identified by the offline training tool, then
the component weightings strategy is a promising candidate as there will be lower overall
dimming, resulting in users experiencing increased optional component availability.

7.4.4 ComponentWeightings: Improvement over Baseline Dimming

Aim and Hypothesis. To investigate whether dimming with component weightings leads
to an significant improvement in both (A) the number of items and (B) recommendations
checked out over baseline dimming.

Method. We run the constant load scenario described in Section 7.2.2, first for five repeats
with baseline dimming enabled (control group), then for five repeats with dimming with
the component weightings obtained in the previous section (candidate group), collecting
the number of items and recommendations checked out to perform a Welch’s t-test on the
two groups.

Results. Figure 7.3 shows the results of running the constant load scenario with our
component weightings in Listing 7. Due to an identical methodology step, we used our
existing baseline dimming data from Table 7.2.

(A) The number of items checked out for dimming with component weightings (µ =
2698.4, s = 33.3) was significantly higher than that of baseline dimming (µ = 2313.4, s =
83.5), t(7) = 9.58, p < .001, one-tailed.

(B) The number of recommendations checked out for dimming with component weight-
ings (µ = 1439.0, s = 20.7) was significantly higher than that of baseline dimming (µ =
887.4, s = 29.6), t(5) = 34.1, p < .001, one-tailed.

Run Items Checked Out Attrition

Total of which Recommended

1 2688 1412 1027

2 2645 1432 992

3 2722 1437 989

4 2726 1469 1014

5 2711 1445 982

avg 2698.4 1439.0 1000.8

s 33.3 20.7 18.9

Table 7.3: Shopping metrics for five constant load scenario runs for dimming with component
weightings.

Discussion. We see significant increases in both items and recommendations checked out
with the component weightings strategy compared against baseline dimming. This is ex-
pected as baseline dimming is equivalent to using the component weightings strategy with
all weightings set to 1, restricting user behaviour as optional components are dimmed more
heavily. With the weighting for the recommender component relaxed, more recommenda-
tions are visited during user sessions, leading to these significant increases.

45

7.4.5 Component Weightings: Online Training Correctness

Aim. To investigate whether online training improves component weightings and whether
they converge upon the optimal offline training weightings given in Listing 7.

Method. We ran a slightly modified version of the constant load scenario described in
Section 7.2.2. The scenario ran once for a duration of 6 hours 10 seconds with 270 users.
The number of users was slightly reduced from our usual number of 280 to prevent system
saturation with sub-optimal component weightings. Dimming by component weightings
was enabled, with initial weightings set to 0.5. We captured response time and PID output
data, along with the control and candidate group component weightings.

Results. Figure 7.9 shows changes to component weightings over the course of the exper-
iment. The cart component weighting decreased to around 0.8 over time, with a small
period of decrease to around 0.3 around the 2000 second mark. The recommender weight-
ing fluctuated between large and small values. The news component decreased over time,
settling around 0.2.

Figure 7.10 shows the effect of our experiment on the response time and PID controller
output. The response time and PID output mirror the changes in component weightings as
expected: due to the cart component being a large contributor to system load, a decrease
in its weighting increases PID output and vice-versa. Likewise, changes in the recommender
and news components do not have visible effects on response time or PID output.

0 2000 4000 6000 8000 10000

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

C
om

p
on

en
t

w
ei

gh
ti

n
g

Cart

Recommender

News

Figure 7.9: Control group component weightings for the online training correctness experiment.

0 2000 4000 6000 8000 10000

Time (seconds)

0

2

4

6

8

10

12

14

16

R
es

p
on

se
ti

m
e

(s
ec

on
d

s)

0

20

40

60

80

100

P
ID

ou
tp

u
t

(%
)

Setpoint

Response time

PID output

Figure 7.10: 95th percentile response time and PID controller graph for the online training
correctness experiment.

46

Discussion. We see an overall improvement in weightings compared to baseline dimming
without component weightings, hence the availability of components is increased with a
minimal increase in PID output. We find that online training works in increasing the
weighting of the cart component, which significantly reduces system load. Likewise, for
news, which does not heavily contribute to load, online training successfully relaxes its
weighting, making the optional component available to more users.

However, we see from fluctuations in the recommender component that online training is
not a perfect solution. The reason for this observation is a combination of interactions
between components, and noise in the control and candidate group response times. As
the recommender component is made more available, the cart component is called more
frequently over time due to heightened user interest in items, leading to marginally higher
95th percentile response times, and vice-versa. Since both groups use the same resources
(such as carts-db), the control group response times are also affected, leading to additional
noise. As the contribution to overall system load of making the recommender component
more available is small but not negligible, statistical errors can occur which lead to the
inability for weightings to settle over time.

Overall, online training works adequately: though the component weightings do not con-
verge on those given in Listing 7, we still see an improvement where weightings for compo-
nents which contribute more load are higher. Fluctuations and occasional errors do occur,
however, these are expected as perfect online training would obviate the need for offline
training.

7.4.6 Component Weightings: Online Training Robustness

Aim. To investigate whether online training is responsive to changes in workload mixes.

Method. Like in the correctness experiment, we run a slightly modified version of the
constant load scenario described in Section 7.2.2 for 6 hours 10 seconds with 270 users and
all initial weightings set to 0.5. To vary the workload, at 3 hours 10 seconds, we changed
the load testing profile mix to a split of zero users on the buying profile, three-sevenths
on browsing and four-seventh on news. We captured response time and PID output data,
along with control and candidate group component weightings.

Results. Figure 7.11 shows changes to component weightings during the experiment with
a vertical line representing the point of change in profile mixes. During the original profile
mix, we see the cart and news components increased in weightings, while the news compo-
nent stayed the same. During the later profile mix, we see that all component weightings
ultimately experienced decreases of small magnitudes, though the cart component also ex-
perienced a brief increase in weightings. Figure 7.12 shows response time and PID output
of the system.

Discussion. We find that online training is robust to changes in workloads. All weightings
decreased in the second half of the experiment as the buying user profile, which places a high
amount of load on the carts database, was no longer used. As the workload shifted towards
the browsing and news profiles, the cart component was used less intensively, causing the
95th percentile response time to be lower and more stable. We are also confident that these
observations are not due to error: although decreases in recommender and news workflows
alone could be due to statistical error as discussed in the correctness experiment, seeing a
decrease occur in cart weightings would not be plausible unless the decrease truly had no
effect on the response time distribution.

47

0 2000 4000 6000 8000 10000

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0
C

om
p

on
en

t
w

ei
gh

ti
n

g

Cart

Recommender

News

Figure 7.11: Control group component weightings for the online training robustness experiment.

0 2000 4000 6000 8000 10000

Time (seconds)

0

2

4

6

8

10

12

14

16

R
es

p
on

se
ti

m
e

(s
ec

on
d

s)

0

20

40

60

80

100

P
ID

o
u

tp
u

t
(%

)

Setpoint

Response time

PID output

Figure 7.12: 95th percentile response time and PID controller graph for the online training
robustness experiment.

7.4.7 Profiling: Behaviour

Aim. (A) To investigate the effect of the profiling strategy on response time and PID
controller output. (B) To ensure that the edge case where the system must be dimmed
when all requests are only of one priority is correctly handled.

Method. For Aim (A), we ran the constant load scenario as described in Section 7.2.2
once with profiling enabled and component weightings not set. For Aim (B), we ran this
scenario again, however, we tested the high priority edge case by setting all users (a total
of 160 instead of 280 to prevent saturation) to the buying profile, and we tested the low
priority edge case by setting all users to the browsing profile. For both aims, we collected
the response time, PID output, and priority assignments.

Results. Figure 7.13 shows the effect of running the constant load scenario with profiling
enabled. Raw data shows a response time of µ = 2.97s, σ = 0.72s and PID output of
µ = 37.6%, σ = 2.3% between 200 and 1810 seconds. Figure 7.14 shows profiles being
assigned over time for the constant load scenario.

Figure 7.15 shows the effect of sending load with either all low priority or all high priority
profiles on response times and PID output. Figure 7.16 shows profile assignments for these
edge cases.

48

0 250 500 750 1000 1250 1500 1750

Time (seconds)

0

5

10

15

20

25

R
es

p
o
n

se
ti

m
e

(s
ec

o
n

d
s)

0

20

40

60

80

100

P
ID

ou
tp

u
t

(%
)

Setpoint

Response time

PID output

Figure 7.13: 95th percentile response time and PID controller graph for the constant load sce-
nario, dimming with profiling, component weightings not set.

0 250 500 750 1000 1250 1500 1750

Time (seconds)

0

50

100

150

200

250

N
o.

A
ss

ig
n

m
en

ts

Low priority

High priority

Unknown priority

Figure 7.14: Profile assignments aggregated every 30 seconds for the constant load scenario,
dimming with profiling, component weightings not set.

0 250 500 750 1000 1250 1500 1750

Time (seconds)

0

2

4

6

8

10

12

14

16

R
es

p
on

se
ti

m
e

(s
ec

o
n

d
s)

0

20

40

60

80

100

P
ID

ou
tp

u
t

(%
)

Setpoint

Response time (low priority)

Response time (high priority)

PID output (low priority)

PID output (high priority)

Figure 7.15: Profile assignments aggregated every 30 seconds for the constant load scenario for
edge cases, dimming with profiling, component weightings not set. Smoothened with exponential
weighted average over 20 seconds for readability.

Discussion. We see from the standard constant load run that the expected brownout
behaviour is achieved. We note a slightly greater variance compared to baseline dimming
as dimming decisions for profiled sessions last for two minutes, reducing the dimmer’s
responsiveness to the PID controller output. Profiling assignments also behaved as ex-

49

0 200 400 600

Time (seconds)

0

50

100

150

200

250

300
N

o
.

A
ss

ig
n

m
en

ts

Low priority

Unknown priority

(a) Only low priority users.

0 200 400 600

Time (seconds)

0

50

100

150

200

N
o
.

A
ss

ig
n

m
en

ts

High priority

Unknown priority

(b) Only high priority users.

Figure 7.16: Profile assignments aggregated every 30 seconds for the constant load scenario edge
cases, dimming with profiling, component weightings not set.

pected: unknown priorities are assigned at the start as the system has insufficient data
for all sessions, and all sessions are successfully profiled as low or high priority once the
unknown session assignment cookies expire. We note that the number of assignments was
greater than the total number of users as duplicate session IDs were present in the profiling
queue.

For the edge cases where all users are all either of low or high priority, dimming occurred as
expected, validating that our dimming decision equation handles edge cases correctly.

7.4.8 Profiling: Improvement over Baseline Dimming

Aims and Hypothesis. To investigate whether dimming with profiling without compo-
nent weightings set leads to an significant improvement in both (A) the number of items
and (B) recommendations checked out over baseline dimming.

Method. We ran the constant load scenario described in Section 7.2.2 for five repeats
with baseline dimming enabled (control group), then for five repeats with dimming with
profiling enabled (candidate group), collecting the number of items and recommendations
checked out to perform Welch’s t-tests for our two hypotheses.

Results. Table 7.4 shows the results of running the constant load scenario for dimming
with profiling. Due to an identical methodology step, we use our existing baseline dimming
data from Table 7.2.

(A) The number of items checked out for dimming with profiling (µ = 2089.4.4, s = 89.9)
was not significantly higher than that of baseline dimming (µ = 2313.4, s = 83.5), t(6) =
−3.85, p < .001, one-tailed.

(B) The number of recommendations checked out for dimming with profiling (µ = 1056.0, s =
51.4) was significantly higher than that of baseline dimming (µ = 887.4, s = 29.6),
t(7) = 13.4, p < .001, one-tailed.

Discussion. We observe a higher number of recommendations when dimming with pro-
filing as opposed to baseline dimming. This is because once low and high priorities were
assigned, an average of ~37% of all low priority users were always dimmed, while high pri-

50

Run Items Checked Out Attrition

Total of which Recommended

1 2181 1091 1170

2 2042 1022 1238

3 2187 1121 1195

4 1986 993 1281

5 2051 1053 1209

avg 2089.4 1056.0 1218.6

s 89.9 51.4 42.7

Table 7.4: Shopping metrics for five constant load scenario runs, profile-based dimming, compo-
nent weightings not set.

ority users were never dimmed. However, we observe a ~10% decrease in the total number
of items checked out – a more important metric than the number of recommendations.
One contributing reason for a lack of increase may be that users were assigned an un-
known priority for the first three to four minutes of each experiment iteration, where the
system behaved similarly to baseline dimming. However, this reason alone does not justify
a decrease. We believe an additional factor was that the spike in 95th percentile response
time to 25 seconds shown at 60 seconds in Figure 7.13 – not as prominent in other experi-
ments – caused a significant number of users to attrite after a long wait. We remark that
we adopted a specific profiling method for our experiments and different methods might
perform differently.

7.4.9 Profiling: Combining with Component Weightings

Aim and Hypothesis. To investigate the effect of combining the component weightings
strategy with profiling on response time and PID controller output, as well as the effect
on business objectives.

Method. We ran the constant load scenario described in Section 7.2.2 with the profiling
strategy and component weightings in Listing 7 set for five repeats, then did the same
with profiling without component weightings set. We collected response time and PID
output data, along with the number of items and recommendations checked out, in order
to perform Welch t-tests.

Results. Table 7.5 and Figure 7.17 show the results of running the constant load scenario
for profiling with component weightings set. Due to an identical methodology step, we
used our existing profiling without component weightings data from Table 7.4.

There was no significant increase in the number of items checked out for profiling with com-
ponent weightings set (µ = 2144.4, s = 51.6) compared with profiling without component
weightings set (µ = 2089.4, s = 89.9), t(6) = 1.187, p < 0.1, one-tailed. On the other hand,
the number of recommendations checked out for profiling with component weightings set
(µ = 1146.4, s = 31.6) was significantly higher than that of profiling without component
weightings set (µ = 1056.0, s = 51.4), t(6) = 3.35, p = 0.01.

Additionally, the PID output between 200 and 1810 seconds of the profiling with component
weightings strategy (µ = 44.1%, σ = 2.57%, N = 1710) in Figure 7.17 compared with that

51

of the profiling without component weightings strategy (µ = 37.6%, σ = 2.26%, N = 1710)
in Figure 7.13 showed a significant increase, z = 78.5, p < .001, one-tailed.

Run Items Checked Out Attrition

Total of which Recommended

1 2192 1175 1169

2 2068 1100 1211

3 2128 1131 1221

4 2192 1174 1188

5 2142 1152 1194

avg 2144.4 1146.4 1196.6

s 51.6 31.6 20.3

Table 7.5: Shopping metrics for five constant load scenario runs, profile-based dimming, compo-
nent weightings set.

0 200 400 600 800 1000

Time (seconds)

0

5

10

15

20

25

R
es

p
o
n

se
ti

m
e

(s
ec

on
d

s)

0

20

40

60

80

100

P
ID

ou
tp

u
t

(%
)

Setpoint

Response time

PID output

Figure 7.17: 95th percentile response time and PID controller graph for a single run of the
constant load scenario, dimming with profiling, component weightings set.

Discussion. Despite the statistically significant increase in items checked out when com-
bining profiling with component weightings, we conclude that profiling with component
weightings set does not lead to an improvement over profiling without component weight-
ings set. First, the absolute increase in recommendations checked out was small (<100)
and the total number of items checked out, which did not show a significant increase, is
the more important statistic. More importantly, there was a significant increase in PID
output, leading to more optional components being dimmed for users, despite there not
being a significant increase in the total number of items checked out. With heavier dim-
ming leading to little increase in business objectives, combining profiling with component
weightings does not appear to be a worthwhile strategy.

7.4.10 Comparing Component Weightings and Profiling

Aim. To investigate whether the component weightings and profiling strategies are equally
effective.

Method. We used data for response time, PID output, and the number of items and
recommendations checked out captured in the previous component weightings and profiling

52

strategy experiments to perform a two-tailed Welch t-test, informing the existence of a
significant difference between the two strategies. For the profiling strategy, we used data
for profiling without component weightings set, as we have demonstrated in the previous
experiment that profiling is not improved when component weightings are set.

Results. The number of items checked out when dimming with component weightings
(µ = 2698.4, s = 33.3) compared with dimming with profiling (µ = 2089.4, s = 89.9)
showed a significant difference, t(5) = 14.2, p < 0.001, two-tailed. Likewise, the number of
recommendations checked out when dimming with component weightings (µ = 1439.0, s =
20.7) compared with dimming with profiling (µ = 1056.0, s = 51.4) showed a significant
difference, t(5) = 15.4, p < 0.001, two-tailed.

Additionally, the PID output between 200 and 1810 seconds of the component weightings
strategy (µ = 36.6%, σ = 1.7%, N = 1710) in Figure 7.8 compared with that of the profiling
strategy (µ = 37.6%, σ = 2.3%, N = 1710) in Figure 7.13 from the runs in our previous
sections showed a significant difference, z = 14.19, p < .001, two-tailed.

Discussion. Our results show that profiling performed worse than component weightings.
First, fewer items and recommendations were checked out during profiling. Second, there
was a small increase in PID output during profiling, making optional components inacces-
sible for a larger number of users. Hence, component weightings can be viewed as a better
strategy than profiling with our evaluation setup and specific profiling method.

However, our assessment only applies to testing with Sock Shop for Kubedim: in other
environments, where there is no optional component that should be dimmed significantly
more than others, profiling may be a stronger strategy, especially where clear user patterns
and priorities can be established. Therefore, we consider component weightings and pro-
filing to be alternatives, with the preferred strategy dependent on the similarity between
component weightings and the ability to specify accurate profiling rules. Likewise, this
assessment could change with more sophisticated profiling methods.

7.4.11 Conclusion

Baseline
Dimming

Component
Weightings

Profiling Component
Weightings

with Profiling

0

20

40

60

80

100

P
ID

ou
tp

u
t

(%
)

(l
ow

er
is

b
et

te
r)

Figure 7.18: Comparison of PID output from the brownout strategy experiments.

We see from our behavioural experiments that the baseline, component weightings and pro-
filing brownout strategies all follow the expected adaptive control behaviour of responding

53

Dimming
Disabled

Baseline
Dimming

Component
Weightings

Profiling Component
Weightings

with Profiling

0

500

1000

1500

2000

2500

It
em

s
ch

ec
ke

d
o
u

t
(h

ig
h

er
is

b
et

te
r)

Items checked out

of which recommendations

Figure 7.19: Comparison of number of items checked out from the brownout strategy experiments.

to response time setpoint violations with an acceptable settling time and minimal oscilla-
tions. Hence, all strategies significantly improve a system’s ability to respond to high load
compared to no dimming at all. As shown in Figure 7.18, the component weightings and
profiling strategies improve upon baseline dimming by having a lower PID output, causing
optional components to be displayed more frequently for users. We note that these positive
results originate from optimal configurations of component weightings and profiling rules.
Where component weightings are sub-optimal due to inability to exhaustively run offline
training or changes in workload mixes, the online training mode can make appropriate
adjustments to improve component weightings in production.

Using our e-commerce reference application, we have shown that all brownout strategies
significantly improve business objectives compared to no dimming at all. These results
are summarised in Figure 7.19. Likewise, we have shown that the component weightings
strategy significantly improves upon business objectives compared to baseline dimming.
However, in the instance of our reference application, profiling performs on-par with, but
not better than, baseline dimming, likely due to the time taken for sessions to be pro-
filed.

Finally, through combining and contrasting the component weightings and profiling strate-
gies, we have found that combining the strategies is not effective due to a higher level of
dimming despite no significant improvement in business objectives. Second, from con-
trasting component weightings against profiling, we have found that component weight-
ings is the better strategy for Sock Shop; however, this result is not generalisable to wider
applications: users of Kubedim should instead find the better strategy which works for
them.

7.5 Developer Usability

In this section, we focus on evaluating the extent of which Kubedim meets the aim of being
a drop-in solution with easy installation and configuration.

Our evaluation focuses on component weightings. For other aspects of Kubedim, from PID
controller tunings to the expiry times of profiling cookies, we have set default parameter
values which can reasonably apply to deployments outside of Sock Shop. Likewise, the
configuration for our other brownout strategy, profiling, is rule-based and purely dependent

54

on developer knowledge, with instructions available in the user manual (Appendix A). In
contrast, having accurate component weightings depends on running a training tool to
capture black-box behaviour, so we will investigate the extent of which this strategy can
be deployed with minimal time spent on configuration.

7.5.1 Component Weightings

Aim. To investigate the sensitivity of the PID output to changes in component weightings,
thereby informing the extent of which using sub-optimal component weightings (e.g., due
to an informed guess) would be effective.

Method. For each of the optimal components given in Listing 7, we fixed the value of the
other two components to the optimal value, then varied the chosen component with a range
from 0.0 to 1.0 inclusive with a step of 0.05. We ran the constant load scenario described
in 7.2.2 for each combination, capping each iteration at 4 minutes 10 seconds instead of the
usual 30 minutes 10 seconds to reduce runtime. We collected the 95th percentile response
time and PID output for each iteration for qualitative analysis.

Results. Figure 7.20 shows the effect of running the above scenario with optimal com-
ponent weightings, acting as a baseline for our analysis. Figures 7.21, 7.22 and 7.23 show
the effects of varying weightings for the news, recommender and cart components respec-
tively.

Figures 7.21 and 7.22 show that, regardless of weightings assigned to the news and rec-
ommender components, the PID output and response time remained at similar levels for
these components.

On the other hand, Figure 7.23 shows that cart weighting assignments had a non-negligible
effect on PID output. We observe that, with the optimal assignment for this component
being 1.0, a small change in weighting to 0.95 did not show a significant difference in
PID output. However, an assignment of 0.75 led to around a 20% increase in PID output.
Finally, at the extreme end with an assignment of 0.0, the component became fully dimmed
and the dimmer was unable to bring the response time to the setpoint, causing the system
to saturate.

0 50 100 150 200 250

Time (seconds)

0

5

10

15

20

25

R
es

p
on

se
ti

m
e

(s
ec

on
d

s)

0

20

40

60

80

100

P
ID

ou
tp

u
t

(%
)

Setpoint

Response time

PID output

Figure 7.20: 95th percentile response time and PID output for the constant load scenario capped
at 250 seconds, with component weightings from Listing 7 set.

Discussion. The results for varying the news and recommender component weightings
are expected: both endpoints contributed negligible differences to the overall system load,

55

0 1000 2000 3000 4000 5000

Time (seconds)

0

5

10

15

20

25

R
es

p
o
n

se
ti

m
e

(s
ec

o
n

d
s)

0

20

40

60

80

100

P
ID

ou
tp

u
t

(%
)

Setpoint

Response time

PID output

Figure 7.21: 95th percentile response time and PID output for the constant load scenario capped
at 250 seconds, with optimal recommender and cart weightings, and variable news weightings.

0 1000 2000 3000 4000 5000

Time (seconds)

0

5

10

15

20

25

R
es

p
o
n

se
ti

m
e

(s
ec

on
d

s)

0

20

40

60

80

100

P
ID

ou
tp

u
t

(%
)

Setpoint

Response time

PID output

Figure 7.22: 95th percentile response time and PID output for the constant load scenario capped
at 250 seconds, with optimal news and cart weightings, and variable recommender weightings.

so varying their weightings did not have a major effect on PID output and response time.
Hence, low load components are not sensitive to changes in component weightings. In
contrast, varying the cart component weightings led to significant changes in response time
and PID output. This suggests that sensitivities of weightings correlate with components’
contributions to system load.

This correlation relates to the usability of Kubedim as developers may be able to see
the contribution of components to system load, as a core aim of microservices is that
components are decoupled from each other [11]. If this aim is followed, then developers
will be able to identify high load components with sub-optimal component weightings from
metrics such as CPU usage and increase weightings appropriately.

Relying on the decoupling of microservices may not be a completely effective strategy in
overcoming sub-optimal component weightings. We have seen from Eismann et al. [29] and
Ackermann et al. [30] that in complex, real-world systems, the performance of components
can depend on each other and change under different workload mixes, and user behaviour
may change with component availability, so it may not be clear how components correlate
with high load. In this case, we may be able to rely on our use of a PID controller to
maintain resilience to load with sub-optimal weighting assignments. In Figure 7.23, we see
that the PID output reliably increased with lower assignments, validating the controller’s
robustness to sub-optimal weightings.

56

0 1000 2000 3000 4000 5000

Time (seconds)

0

5

10

15

20

25

R
es

p
o
n

se
ti

m
e

(s
ec

o
n

d
s)

0

20

40

60

80

100

P
ID

ou
tp

u
t

(%
)

Setpoint

Response time

PID output

Figure 7.23: 95th percentile response time and PID output for the constant load scenario capped
at 250 seconds, with optimal recommender and news weightings, and variable cart weightings.

In the worst case scenario where weighting assignments cause the system to saturate under
high load, as seen with lower assignments in Figure 7.23, the ability for developers to
diagnose the responsible components with sub-optimal assignments may be affected due
to system unavailability. This behaviour can be mitigated by enabling online training,
where less sub-optimal weightings may be discovered under medium load before the system
saturates. Alternatively, developers can perform a full run of offline training over the course
of several hours to obtain optimal weightings. In all cases, the increase in system stability
will be better than no dimming at all.

Conclusion. We conclude that Kubedim has a high level of developer usability as more
involved steps of performing offline training are only required in worst case scenarios. In
some real-world use cases, sub-optimal component weightings can easily be detected as
component weightings correlate with system load in architectures where microservices are
well-decoupled from each other, hence educated guesses in weightings would suffice. In
other cases where component interactions are much less trivial, sub-optimal component
weightings can still suffice due to the robustness of the PID controller. Where weightings
are non-optimal and the system is at risk of saturation even with full dimming, devel-
opers must either enable online training or performing a full run of the offline training
tool in order to obtain adequately optimal component weightings. In all cases, Kubedim
increases system stability compared to no dimming at all and provides tooling to handle
all cases.

Our results give promising indications that Kubedim configurations are robust enough not
to require developers to have a deep knowledge of control theory or performance modelling.
However, we also remark that an empirical usability experiment with developers from
industry would be an interesting direction to further assess Kubedim’s usability.

57

Chapter 8

Conclusion and Future Work

8.1 Conclusion

We have presented Kubedim, a self-adaptive reverse proxy enabling the orchestration of
brownout techniques on optional components of a system deployed with Kubernetes. Like
prior work, Kubedim operates on the load balancer level, allowing straightforward instal-
lation in a Kubernetes cluster without modification of existing source code.

In particular, Kubedim focuses on balancing improving the stability of a service with
improving its business objectives. Beyond the baseline strategy of dimming all optional
components uniformly as done by previous work such as Kotegov and Filieri [6], Kubedim
introduces the following strategies which allow components to be dimmed non-uniformly,
increasing the availability of optional components such as advertisements and recommen-
dations:

• Component Weightings: This strategy allows developers to set probabilities that
each optional component will be dimmed, where the baseline strategy is equivalent to
this strategy with all probabilities set to 1. As optimal probability assignments can be
non-trivial due to interactions between components as their availabilities are changed,
Kubedim provides an offline training tool enabling a developer to automatically
find optimal parameters by training a linear regression model on a non-production
environment over a number of hours. Where these probability assignments become
sub-optimal, either due to workload mixes changing or comprehensive offline training
over the course of several hours being infeasible, we provide an online training mode
to improve probability assignments in production based on A/B testing principles.

• Profiling: This strategy dims users based on priorities, where optional components
are consistently available to high priority users and unavailable to low priority users.
Users priorities are profiled by a set of developer-supplied rules based on their un-
derstanding of user flows. This consistency improves user experience and ensures
component availability is tailored towards those who are likely to contribute more
towards business objectives.

In our implementation, we have overcome the challenge of mitigating side effects such as
bottleneck transfers due to interactions between components by taking a black-box linear
regression approach during offline training for the component weightings strategy, and
allowing weights to be continuously updated during online operation to reflect the impact
of each endpoint in the current operation conditions and workload. This approach also
increases developer usability, as highly theoretical performance modelling knowledge is not
required. In order to achieve applicability to industry use-cases, we have also carefully

58

tuned parameters to reduce the amount of configuration needed, while Kubedim retains
the flexibility for advanced users to adjust the tuning as desired.

In evaluating Kubedim, we have first modified Sock Shop, a popular e-commerce reference
application by adding optional components and significantly improving the reproducibility
of load testing experiments. We have open-sourced these changes, allowing the research and
developer communities to experiment with it and reproduce our work. Using this reference
application, we have shown that our strategies show significant improvements in resilience
and business objectives compared to a system without dimming. Likewise, we have shown
that component weightings performs significantly better than baseline dimming in both
objectives, and that profiling performs on-par with baseline dimming. We conclude that
dimming by component weightings is most effective and usable by developers for systems
which allow for feasible offline training by having a small number of optional components,
predictable workload mixes and some components which contribute significantly more load
than others. In lieu of these features, developers may achieve better results with the
profiling strategy, although this strategy did not prove to be significantly better than
baseline dimming with Sock Shop.

We have also demonstrated positive preliminary findings about the developer usability
of Kubedim, concluding that Kubedim has a high level of usability due to the ease of
which strategies can be configured. In particular, we have concluded that the component
weightings strategy does not necessarily require hours-long running of offline training to
obtain adequate results for systems with a low level of feature interactions. However,
where sub-optimal component weightings are inadequate, we provide both offline and online
training which can improve weightings with a small number of additional steps.

8.2 Future Work

Limitations of Kubedim which would have been resolved with more time, along with future
extensions, are discussed as follows:

• Evaluating on further reference applications. A key limitation with our eval-
uation is that, due to the time required to set up a reference application and and
ensure reproducibility of load test experiments, we have only tested Kubedim on Sock
Shop. While Sock Shop is a benchmark widely used by the performance engineering
community, and it has been developed by several parties to be representative of an
industrial deployment, testing Kubedim on more reference applications would enable
a more thorough evaluation of brownout strategies, particularly as different applica-
tions have different subtle feature interactions, and allow a better understanding of
whether a component weightings or profiling strategy would be more suited to an
arbitrary application.

• Forecasting and heuristics in online training. Online training currently uses
heuristics based on A/B testing principles. With more time, we could investigate
alternative approaches, such as involving ARIMA to perform workload forecasting or
k-means clustering to allow adjustment of component weightings to multiple different
workload mixes, or implementing online optimisation methods for faster convergence
to near-optimal component weightings.

• Investigating combination with orthogonal techniques. Following investiga-
tions by Kotegov and Filieri [6] and Dürango et al. [26] in combining brownout with
auto-scaling and load balancing algorithms respectively, we would like to understand
how Kubedim behaves with similar orthogonal techniques, particularly with auto-
scaling and load balancing technologies with popular cloud Kubernetes providers

59

such as Google Cloud Platform and Amazon Web Services, in order to increase the
industrial applicability of our work.

• Investigating alternative profiling techniques. Though our profiling technique
has been designed to rely on developer knowledge without any need for model train-
ing, we would like to investigate means to make the profiling strategy more per-
formant, reducing the time taken to profile a session and reducing the reliance on
accurate developer-specified rules to successfully classify a large proportion of users.
Likewise, different profiling strategies may prove more effective than ours, in partic-
ular on broader user populations and richer profiling facets. For example, we may be
able to delegate profiling to the client-side through Google’s recent Federated Learn-
ing of Cohorts proposal [48]. Alternatively, we could also investigate lowering the
barrier to entry of creating analytics pipelines and machine learning models for more
automated and adaptable user profiling.

8.3 Ethical Considerations

In this section, we consider implications for data use and software licensing. We do not
believe there are other significant ethical considerations to discuss.

The primary ethical consideration is the possibility of requiring personal or sensitive data
to be collected, both with our implementation and with proposed future work for the
profiling strategy. Profiling users involves keeping a log of actions they have taken, such as
page visits in our implementation. These actions may associate with more sensitive topics,
such as the purchase of medicine in an e-commerce environment. Though we store an
association between session IDs and page visits instead of storing user information, session
IDs can be linked against users, de-anonymising them and causing privacy concerns.

User behaviour logging is a common issue in website analytics, where mitigations involve
requiring users to consent and opt-in to tracking, encrypting data at rest and setting
appropriate data retention policies, in line with legislation such as GDPR. Even if profiling
solely for purposes of improving service availability may be considered to lie under the
“strictly necessary” exemption and opt-in consent may not be required under the GDPR
and related regulations [49], developers using Kubedim have an ethical responsibility to
clearly inform users of this logging.

One potential mitigation for this ethical concern is to perform profiling on the client-side.
From Google’s Federated Learning of Cohorts proposal [48] to advancements in on-device
machine learning [50], future work could shift profiling to the user’s device, passing only
the result to Kubedim.

We also identify a minor ethical consideration in using and publishing open source work.
First, we have licensed our codebase under the MIT License in order to allow others to
modify and distribute our work. Likewise, we have ensured that our codebase has used
libraries with permissive open source licenses. When modifying and redistributing work,
as is the case with our modifications to Sock Shop, we have ensured compliance with the
appropriate licenses.

60

Bibliography

[1] Fowler SJ. Production-Ready Microservices: Building Standardized Systems Across
an Engineering Organization. In: Production-Ready Microservices: Building Stan-
dardized Systems Across an Engineering Organization. 1st ed. O’Reilly Media,
Inc.; 2017. Available from: https://www.oreilly.com/library/view/production-
ready-microservices/9781491965962/ch04.html.

[2] Richardson C. Circuit Breaker [Internet]; 2017. [Accessed 17th January 2021]. Avail-
able from: https://microservices.io/patterns/reliability/circuit-breaker.
html.

[3] Klein C, Maggio M, Arzén KE, Hernández-Rodriguez F. Brownout: Building more
robust cloud applications. In: Proceedings - International Conference on Software
Engineering. 1; 2014. p. 700–711.

[4] Kotegov I, Filieri A. Towards coordinated autoscaling and application brownout at
the orchestrator level. In: Communications in Computer and Information Science.
vol. 1269 CCIS. Springer Science and Business Media Deutschland GmbH; 2020. p.
269–274. Available from: https://doi.org/10.1007/978-3-030-59155-7_21.

[5] Filieri A, Hoffmann H, Maggio M. Automated multi-objective control for self-adaptive
software design. 2015 10th Joint Meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering, ESEC/FSE 2015 - Proceedings. 2015:13–24.

[6] Kotegov I. Model-free Control for Adaptive Software: The Brownout. Imperial College
London; 2020.

[7] Weaveworks, Inc. Microservices Demo: Sock Shop [Internet]; 2021. [Accessed 14th
June 2021]. Available from: https://microservices-demo.github.io/.

[8] Villamizar M, Garcés O, Castro H, Verano M, Salamanca L, Gil S. Evaluating the
Monolithic and the Microservice Architecture Pattern to Deploy Web Applications in
the Cloud. 10th Computing Colombian Conference. 2015:583–590.

[9] Richardson C. Microservice Architecture pattern [Internet]; 2017. [Accessed 25th May
2021]. Available from: https://microservices.io/patterns/microservices.html.

[10] Zimmermann O. Microservices tenets: Agile approach to service development and
deployment; 2017. 3-4.

[11] Pahl C, Brogi A, Soldani J, Jamshidi P. Cloud Container Technologies: a State-of-
the-Art Review. IEEE Transactions on Cloud Computing. 2017;7(3):677–692.

[12] Shah J, Dubaria D. Building modern clouds: Using docker, kubernetes google cloud
platform. 2019 IEEE 9th Annual Computing and Communication Workshop and
Conference, CCWC 2019. 2019:184–189.

61

https://www.oreilly.com/library/view/production-ready-microservices/9781491965962/ch04.html
https://www.oreilly.com/library/view/production-ready-microservices/9781491965962/ch04.html
https://microservices.io/patterns/reliability/circuit-breaker.html
https://microservices.io/patterns/reliability/circuit-breaker.html
https://doi.org/10.1007/978-3-030-59155-7_21
https://microservices-demo.github.io/
https://microservices.io/patterns/microservices.html

[13] Rawdat A. Announcing NGINX Ingress Controller for Kubernetes Release
1.8.0 - NGINX [Internet]; 2020. [Accessed 25th May 2021]. Available from:
https://www.nginx.com/blog/announcing-nginx-ingress-controller-for-
kubernetes-release-1-8-0/.

[14] Ding J, Cao R, Saravanan I, Morris N, Stewart C. Characterizing Service Level
Objectives for Cloud Services: Realities and Myths. In: 2019 IEEE International
Conference on Autonomic Computing (ICAC); 2019. p. 200–206.

[15] Mayr A, Putz P, Gerber A, Wallerstorfer D. Cloud-Native Evolution. In: Cloud-Native
Evolution. O’Reilly Media, Inc.; 2017. Available from: https://www.oreilly.com/
library/view/cloud-native-evolution/9781492048794/ch04.html.

[16] Filieri A, Maggio M, Angelopoulos K, D’Ippolito N, Gerostathopoulos I, Hempel AB,
et al. Software Engineering Meets Control Theory. In: Proceedings - 10th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS 2015; 2015. p. 71–82.

[17] Salehie M, Tahvildari L. Self-adaptive software: Landscape and research challenges.
ACM Transactions on Autonomous and Adaptive Systems. 2009;4(2).

[18] Filieri A, Maggio M, Angelopoulos K, D’Ippolito N, Gerostathopoulos I, Hempel AB,
et al.. Control strategies for self-adaptive software systems; 2017.

[19] Owen AB. A randomized Halton algorithm in R; 2017. Available from: http://
arxiv.org/abs/1706.02808.

[20] Hyndman RJ, Athanasopoulos G. Least squares estimation. In: Forecasting: prin-
ciples and practice. 2nd ed. Melbourne, Australia: OTexts; 2018. Available from:
https://otexts.com/fpp2/least-squares.html.

[21] Apte R, Hu L, Schwan K, Ghosh A. Look Who’s Talking: Discovering Dependencies
between Virtual Machines Using CPU Utilization. In: Proceedings of the 2nd USENIX
Conference on Hot Topics in Cloud Computing. HotCloud’10. USA: USENIX Associ-
ation; 2010. p. 17.

[22] Giles D. Testing for Granger Causality [Internet]; 2011. [Accessed 12th January
2021]. Available from: https://davegiles.blogspot.com/2011/04/testing-for-
granger-causality.html.

[23] Thalheim J, Rodrigues A, Akkus IE, Bhatotia P, Chen R, Viswanath B, et al. Sieve:
Actionable insights from monitored metrics in distributed systems. Middleware 2017
- Proceedings of the 2017 International Middleware Conference. 2017:14–27.

[24] Crualaoich DO. The Kolmogorov-Smirnov Test — Kolmogorov-Smirnov [Internet];
2016. [Accessed 25th May 2021]. Available from: https://daithiocrualaoich.
github.io/kolmogorov_smirnov/.

[25] Vilaplana J, Solsona F, Teixidó I, Mateo J, Abella F, Rius J. A queuing theory model
for cloud computing. Journal of Supercomputing. 2014 4;69(1):492–507.

[26] Dürango J, Dellkrantz M, Maggio M, Klein C, Papadopoulos AV, Hernández-
Rodriguez F, et al. Control-theoretical load-balancing for cloud applications with
brownout. In: 53rd IEEE Conference on Decision and Control; 2014. p. 5320–5327.

[27] Klein C, Papadopoulos AV, Dellkrantz M, Dürango J, Maggio M, Årzén KE, et al.
Improving Cloud Service Resilience Using Brownout-Aware Load-Balancing. In: 2014
IEEE 33rd International Symposium on Reliable Distributed Systems; 2014. p. 31–40.

62

https://www.nginx.com/blog/announcing-nginx-ingress-controller-for-kubernetes-release-1-8-0/
https://www.nginx.com/blog/announcing-nginx-ingress-controller-for-kubernetes-release-1-8-0/
https://www.oreilly.com/library/view/cloud-native-evolution/9781492048794/ch04.html
https://www.oreilly.com/library/view/cloud-native-evolution/9781492048794/ch04.html
http://arxiv.org/abs/1706.02808
http://arxiv.org/abs/1706.02808
https://otexts.com/fpp2/least-squares.html
https://davegiles.blogspot.com/2011/04/testing-for-granger-causality.html
https://davegiles.blogspot.com/2011/04/testing-for-granger-causality.html
https://daithiocrualaoich.github.io/kolmogorov_smirnov/
https://daithiocrualaoich.github.io/kolmogorov_smirnov/

[28] Xu M, Buyya R. Brownout approach for adaptive management of resources and appli-
cations in cloud computing systems: A taxonomy and future directions. ACM Com-
puting Surveys. 2019;52(1). Available from: https://doi.org/10.1145/3234151.

[29] Eismann S, Walter J, Von Kistowski J, Kounev S. Modeling of Parametric Dependen-
cies for Performance Prediction of Component-Based Software Systems at Run-Time.
Proceedings - 2018 IEEE 15th International Conference on Software Architecture,
ICSA 2018. 2018:135–144.

[30] Ackermann V, Eismann S, Grohmann J, Kounev S. Black-box learning of paramet-
ric dependencies for performance models. In: CEUR Workshop Proceedings. vol.
2245; 2018. p. 78–86. Available from: https://github.com/Olifee/automatic_
dependency_characterization.

[31] Grohmann J, Eismann S, Elflein S, Kistowski JV, Kounev S, Mazkatli M. Detecting
Parametric Dependencies for Performance Models Using Feature Selection Techniques.
In: 2019 IEEE 27th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS); 2019. p. 309–322.

[32] Bauer A, Lesch V, Versluis L, Ilyushkin A, Herbst N, Kounev S. Chamulteon: Coor-
dinated Auto-Scaling of Micro-Services. In: 2019 IEEE 39th International Conference
on Distributed Computing Systems (ICDCS); 2019. p. 2015–2025.

[33] Shah SY, Yuan Z, Lu S, Zerfos P. Dependency analysis of cloud applications for
performance monitoring using recurrent neural networks. 2018:1534–1543.

[34] Kim S, Kim JS, Hwang S, Kim Y. An allocation and provisioning model of science
cloud for high throughput computing applications. ACM International Conference
Proceeding Series. 2013.

[35] Gias AU, Casale G, Woodside M. ATOM: Model-driven autoscaling for microservices.
In: Proceedings - International Conference on Distributed Computing Systems. vol.
2019-July. Institute of Electrical and Electronics Engineers Inc.; 2019. p. 1994–2004.

[36] Von Kistowski J, Eismann S, Schmitt N, Bauer A, Grohmann J, Kounev S. TeaStore:
A micro-service reference application for benchmarking, modeling and resource man-
agement research. Proceedings - 26th IEEE International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems, MASCOTS
2018. 2018:223–236.

[37] Zhou X, Peng X, Xie T, Sun J, Xu C, Ji C, et al. Benchmarking microservice systems
for software engineering research. Proceedings - International Conference on Software
Engineering. 2018:323–324.

[38] Verreydt S, Beni H, Truyen E, Lagaisse B, Joosen W. Leveraging Kubernetes for
adaptive and cost-efficient resource management. 2019. Available from: https://
doi.org/10.1145/3366615.3368357.

[39] Kohavi R, Longbotham R. Online Controlled Experiments and A/B Testing. In:
Encyclopedia of Machine Learning and Data Mining. Springer US; 2017. p. 922–929.
Available from: https://link.springer.com/referenceworkentry/10.1007/978-
1-4899-7687-1_891.

[40] Andrawos M, Helmich M. Cloud Native Programming with Golang: Develop
Microservice-Based High Performance Web Apps for the Cloud with Go. Packt Pub-
lishing; 2017.

63

https://doi.org/10.1145/3234151
https://github.com/Olifee/automatic_dependency_characterization
https://github.com/Olifee/automatic_dependency_characterization
https://doi.org/10.1145/3366615.3368357
https://doi.org/10.1145/3366615.3368357
https://link.springer.com/referenceworkentry/10.1007/978-1-4899-7687-1_891
https://link.springer.com/referenceworkentry/10.1007/978-1-4899-7687-1_891

[41] Bezra̧k K, Przyłucki S. Impact of the cloud application programming language on the
performance of its implementation in selected serverless environments; 2020. Available
from: https://ph.pollub.pl/index.php/jcsi/article/view/1572.

[42] DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, et al.
Dynamo: Amazon’s highly available key-value store. In: Operating Systems Review
(ACM). New York, New York, USA: ACM Press; 2007. p. 205–220. Available from:
http://portal.acm.org/citation.cfm?doid=1294261.1294281.

[43] Wescott T. PID Without a PhD. Embeded Systems Programming. 2000:86–108.

[44] ThinkWithGoogle. Mobile site load time statistics - Think with Google [Internet];
2018. [Accessed 3rd March 2021]. Available from: https://www.thinkwithgoogle.
com/data/mobile-site-load-time-statistics/.

[45] Åström KJ, Murray RM. Feedback Systems: An Introduction for Scientists and
Engineers; 2009. Available from: http://press.princeton.edu/titles/8701.html.

[46] Treat T. Guidelines for Chaos Engineering, Part 2 [Internet]; 2020. [Accessed 25th May
2021]. Available from: https://blog.realkinetic.com/guidelines-for-chaos-
engineering-part-2-ad0be582ff12.

[47] Yuan X. A Brief Analysis on the Implementation of the Kubernetes Scheduler
- Alibaba Cloud Community [Internet];. [Accessed 25th May 2021]. Avail-
able from: https://www.alibabacloud.com/blog/a-brief-analysis-on-the-
implementation-of-the-kubernetes-scheduler_595083.

[48] Bindra C. Building a privacy-first future for web advertising [Internet]; 2021. [Accessed
25th May 2021]. Available from: https://blog.google/products/ads-commerce/
2021-01-privacy-sandbox/.

[49] ICO. What are the rules on cookies and similar technologies? | ICO [Internet];
2021. [Accessed 1st June 2021]. Available from: https://ico.org.uk/for-
organisations/guide-to-pecr/guidance-on-the-use-of-cookies-and-
similar-technologies/what-are-the-rules-on-cookies-and-similar-
technologies/.

[50] Dhar S, Guo J, Liu J, Tripathi S, Kurup U, Shah M. On-Device Machine Learning:
An Algorithms and Learning Theory Perspective. 2019 11. Available from: http:
//arxiv.org/abs/1911.00623.

64

https://ph.pollub.pl/index.php/jcsi/article/view/1572
http://portal.acm.org/citation.cfm?doid=1294261.1294281
https://www.thinkwithgoogle.com/data/mobile-site-load-time-statistics/
https://www.thinkwithgoogle.com/data/mobile-site-load-time-statistics/
http://press.princeton.edu/titles/8701.html.
https://blog.realkinetic.com/guidelines-for-chaos-engineering-part-2-ad0be582ff12
https://blog.realkinetic.com/guidelines-for-chaos-engineering-part-2-ad0be582ff12
https://www.alibabacloud.com/blog/a-brief-analysis-on-the-implementation-of-the-kubernetes-scheduler_595083
https://www.alibabacloud.com/blog/a-brief-analysis-on-the-implementation-of-the-kubernetes-scheduler_595083
https://blog.google/products/ads-commerce/2021-01-privacy-sandbox/
https://blog.google/products/ads-commerce/2021-01-privacy-sandbox/
https://ico.org.uk/for-organisations/guide-to-pecr/guidance-on-the-use-of-cookies-and-similar-technologies/what-are-the-rules-on-cookies-and-similar-technologies/
https://ico.org.uk/for-organisations/guide-to-pecr/guidance-on-the-use-of-cookies-and-similar-technologies/what-are-the-rules-on-cookies-and-similar-technologies/
https://ico.org.uk/for-organisations/guide-to-pecr/guidance-on-the-use-of-cookies-and-similar-technologies/what-are-the-rules-on-cookies-and-similar-technologies/
https://ico.org.uk/for-organisations/guide-to-pecr/guidance-on-the-use-of-cookies-and-similar-technologies/what-are-the-rules-on-cookies-and-similar-technologies/
http://arxiv.org/abs/1911.00623
http://arxiv.org/abs/1911.00623

Appendix A

User Manual

Figure A.1: A screenshot of an excerpt of the user manual.

Supplementary Data File

Description: As shown in Figure A.1, Kubedim includes a user manual instructing in-
stallation and usage for a developer audience.

Uploaded file path: docs/

Additional notes: A live version can be found online at https://kubedim.readthedocs.
io/.

65

https://kubedim.readthedocs.io/
https://kubedim.readthedocs.io/

Appendix B

Sock Shop for Kubedim
Configuration

B.1 Main Application Configuration

Supplementary Data File

Description: Kubernetes YAML configuration files for the namespace, deployments and
services used to deploy Sock Shop for Kubedim.

Uploaded file path: manifests/sockshop/

Additional notes: A live version can be found online at https://github.com/kcz17/
manifests/tree/main/sockshop.

B.2 Kubedim Configuration

Supplementary Data File

Description: Kubernetes YAML configuration files used to deploy Kubedim for the Sock
Shop application.

Uploaded file path: manifests/kubedim/

Additional notes: A live version can be found online at https://github.com/kcz17/
manifests/tree/main/kubedim.

B.3 Offline Training Tool Configuration

Supplementary Data File

Description: Configuration file for the offline training tool.

Uploaded file path: train/config.yaml

Additional notes: A live version can be found online at https://github.com/kcz17/
train/blob/master/config.yaml.

66

https://github.com/kcz17/manifests/tree/main/sockshop
https://github.com/kcz17/manifests/tree/main/sockshop
https://github.com/kcz17/manifests/tree/main/kubedim
https://github.com/kcz17/manifests/tree/main/kubedim
https://github.com/kcz17/train/blob/master/config.yaml
https://github.com/kcz17/train/blob/master/config.yaml

Appendix C

Saturation Experiments

0 500 1000 1500 2000 2500 3000

Time (seconds)

0

10

20

30

40

50

60

R
es

p
o
n

se
ti

m
e

(s
ec

on
d

s)

Figure C.1: Response time graph of repeated constant load experiments with dimming disabled,
with the number of users set from 230 to 330 inclusive with intervals of 10.

67

0 500 1000 1500 2000 2500 3000 3500

Time (seconds)

0

10

20

30

40

50

R
es

p
o
n

se
ti

m
e

(s
ec

o
n

d
s)

Figure C.2: Response time graph of repeated constant load experiments with baseline dimming, with the number of users set from 260 to 500 inclusive with
intervals of 20.

68

Appendix D

Brownout Strategy Experiments

D.1 Dimming Disabled

Supplementary Data File

Description: 95th percentile response time data for the constant load scenario with
dimming disabled, used for Figure 7.5.

Uploaded file paths: experiments/notebooks/data/constant_load_disabled_p95_
2021-05-13-17-04_chronograf_data.csv

Supplementary Data File

Description: 50th, 75th and 95th percentile response time data for the constant load
scenario with dimming disabled with five repeats, used for Table 7.1.

Uploaded file path: experiments/notebooks/data/constant_load_repeats_
dimming_disabled_response_time_2021-05-10-21-38_chronograf_data.csv

D.2 Baseline Dimming

Supplementary Data Files

Description: PID output, and 50th, 75th and 95th percentile response time data for the
constant load scenario with baseline dimming enabled, used for Figure 7.6.

Uploaded file paths:

• experiments/notebooks/data/constant_load_pid_chronograf_data.csv

• experiments/notebooks/data/constant_load_p{50|75|95}_2021-05-10-12-14_
chronograf_data.csv

Supplementary Data Files

Description: PID output, and 50th, 75th and 95th percentile response time data for the
flash crowd scenario with baseline dimming enabled, used for Figure 7.7.

Uploaded file path: experiments/notebooks/data/flash_crowd_2021-05-13-19-27_
chronograf_data.csv

69

Supplementary Data Files

Description: PID output, and 50th, 75th and 95th percentile response time data for
the constant load scenario with baseline dimming enabled for five repeats, used for Table
7.2.

Uploaded file paths:

• experiments/notebooks/data/constant_load_repeats_baseline_repeats_
pid_output_2021-05-10-21-43_chronograf_data.csv

• experiments/notebooks/data/constant_load_repeats_baseline_repeats_
response_time_2021-05-10-21-42_chronograf_data.csv

D.3 Component Weightings Strategy

Supplementary Data Files

Description: PID output, and 50th, 75th and 95th percentile response time data for the
constant load scenario with dimming with component weightings enabled for five repeats,
used for Table 7.3.

Uploaded file paths:

• experiments/notebooks/data/constant_load_repeats_weightings_repeats_
pid_output_2021-05-11-15-07_chronograf_data.csv

• experiments/notebooks/data/constant_load_repeats_weightings_repeats_
response_times_2021-05-11-15-06_chronograf_data.csv

Supplementary Data Files

Description: Probability assignments, PID output, and 50th, 75th and 95th percentile
response time data for the online training correctness experiment in Section 7.4.5.

Uploaded file paths:

• experiments/notebooks/data/online_training_correctness_probabilities_
2021-05-27-12-16_chronograf_data.csv

• experiments/notebooks/data/online_training_correctness_pid_and_
response_times_2021-05-27-12-15_chronograf_data.csv

Supplementary Data Files

Description: Probability assignments, PID output, and 50th, 75th and 95th percentile
response time data for the online training robustness experiment in Section 7.4.6.

Uploaded file paths:

• experiments/notebooks/data/online_training_robustness_probabilities_
2021-05-27-16-38_chronograf_data.csv

• experiments/notebooks/data/online_training_robustness_pid_and_
response_times_2021-05-27-16-38_chronograf_data.csv

70

D.4 Profiling Strategy

Supplementary Data Files

Description: Profiling assignments, PID output, and 50th, 75th and 95th percentile
response time data for the profiling without component weightings experiments in Section
7.4.7 and 7.4.8.

Uploaded file paths:

• experiments/notebooks/data/constant_load_repeats_profiling_profile_
assignments_2021-05-12-15-32_chronograf_data.csv

• experiments/notebooks/data/constant_load_repeats_profiling_pid_output_
2021-05-12-15-29_chronograf_data.csv

• experiments/notebooks/data/constant_load_repeats_profiling_response_
times_2021-05-12-15-30_chronograf_data.csv

Supplementary Data Files

Description: Profiling assignments, PID output, and 50th, 75th and 95th percentile
response time data for the profiling edge case experiments in 7.4.7.

Uploaded file paths:

• experiments/notebooks/data/profiling_all_low_edge_case_priority_
assignments_2021-05-17-14-12_chronograf_data.csv

• experiments/notebooks/data/profiling_all_low_edge_case_priority_
assignments_2021-05-17-14-12_chronograf_data.csv

• experiments/notebooks/data/profiling_all_high_edge_case_priority_
assignments_2021-05-17-17-20_chronograf_data.csv

• experiments/notebooks/data/profiling_all_high_edge_case_response_
time_and_pid_output_2021-05-17-17-20_chronograf_data.csv

Supplementary Data Files

Description: Profiling assignments, PID output, and 50th, 75th and 95th percentile
response time data for the experiment combining profiling with component weightings in
Section 7.4.9.

Uploaded file paths:

• experiments/notebooks/data/constant_load_repeats_profiling_with_
component_weightings_priorities_2021-05-14-17-12_chronograf_data.csv

• experiments/notebooks/data/constant_load_repeats_profiling_with_
component_weightings_2021-05-14-17-11_chronograf_data.csv

71

Appendix E

Developer Usability Experiments

Supplementary Data Files

Description: PID output and 95th percentile response time data for the developer us-
ability experiments in Section 7.5.

Uploaded file paths:

• experiments/notebooks/data/developer_usability_baseline_2021-05-19-14-
13_chronograf_data.csv

• experiments/notebooks/data/developer_usability_cart_2021-05-19-14-29_
chronograf_data.csv

• experiments/notebooks/data/developer_usability_news_2021-05-19-14-21_
chronograf_data.csv

• experiments/notebooks/data/developer_usability_recommender_2021-05-19-
14-14_chronograf_data.csv

72

	Introduction
	Motivation
	Objectives and Challenges
	Contributions

	Background
	Cloud Architectures and Microservices
	Microservices
	Containers
	Container Orchestration
	Service Level Objectives and Service Quality Management
	Circuit-Breaker Pattern and Brownout

	Self-Adaptation and Control Theory
	Self-Adaptive Software and Feedback Loops
	Controllers

	Modelling and Forecasting
	Random Sampling
	Time Series Analysis
	Clustering
	Dimensionality Reduction

	Related Work
	Brownout and Control Theory in Adaptive Resource Management
	Performance Modelling and Parametric Dependencies
	Statistical Approaches to Resource Management
	Reference Applications for Microservices

	Kubedim
	Brownout Strategies
	Baseline Dimming
	Component Weightings
	User Profiling

	Deployment
	Configuration
	Component Weightings
	User Profiling

	Implementation
	High-level Architecture
	Proxying and Brownout with Adaptive Control
	Monitoring (Response Time Collection)
	Analysis and Planning (PID Controller)
	Execution (Reverse Proxy Actuation)

	Component Weightings
	Offline Training
	Online Training

	User Profiling
	High-Level Implementation
	Profiling Lifecycle

	Sock Shop for Kubedim
	Reproducibility
	Carts Database
	Session Storage

	Optional Components
	Deploying Kubedim

	Evaluation
	Kubernetes Setup
	Load Testing Setup
	User Behaviour Models
	Load Shape
	Data Collection
	Deployment

	High-level Methodology
	Brownout Strategies
	Baseline Dimming: Behaviour
	Baseline Dimming: Improvement over Dimming Disabled
	Component Weightings: Behaviour
	Component Weightings: Improvement over Baseline Dimming
	Component Weightings: Online Training Correctness
	Component Weightings: Online Training Robustness
	Profiling: Behaviour
	Profiling: Improvement over Baseline Dimming
	Profiling: Combining with Component Weightings
	Comparing Component Weightings and Profiling
	Conclusion

	Developer Usability
	Component Weightings

	Conclusion and Future Work
	Conclusion
	Future Work
	Ethical Considerations

	User Manual
	Sock Shop for Kubedim Configuration
	Main Application Configuration
	Kubedim Configuration
	Offline Training Tool Configuration

	Saturation Experiments
	Brownout Strategy Experiments
	Dimming Disabled
	Baseline Dimming
	Component Weightings Strategy
	Profiling Strategy

	Developer Usability Experiments

